Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the diagnosis for glycogen storage disease type III, the following tests/exams are carried out to determine if the individual has the condition:
- Biopsy (muscle or liver)
- CBC
- Ultrasound
- DNA mutation analysis (helps ascertain GSD III subtype)
The diagnosis of glycogen storage disease IX consists of the following:
- Complete blood count
- Urinalysis
- Histological study of the liver (via biopsy)
- Genetic testing
- Physical exam
The differential diagnosis of glycogen storage disease type III includes GSD I, GSD IX and GSD VI. This however does not mean other glycogen storage diseases should not be distinguished as well.
There are two types of this inherited condition, "glycogen storage disease IXa1" and "glycogen storage disease IXa2" that affect the liver of an individual. Mutations in PHKA2 have been seen in individuals with glycogen storage disease IXa2.
Liver biopsy for microscopic analysis and enzyme assay is required for definitive diagnosis. Diagnosis may include linkage analysis in families with affected members and sequencing of the entire coding region of the GSY2 gene for mutations.
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
Serum glucose levels are measured to document the degree of hypoglycemia. Serum electrolytes calculate the anion gap to determine presence of metabolic acidosis; typically, patients with glycogen-storage disease type 0 (GSD-0) have an anion gap in the reference range and no acidosis. See the Anion Gap calculator.
Serum lipids (including triglyceride and total cholesterol) may be measured. In patients with glycogen-storage disease type 0, hyperlipidemia is absent or mild and proportional to the degree of fasting.
Urine (first voided specimen with dipstick test for ketones and reducing substances) may be analyzed. In patients with glycogen-storage disease type 0, urine ketones findings are positive, and urine-reducing substance findings are negative. However, urine-reducing substance findings are positive (fructosuria) in those with fructose 1-phosphate aldolase deficiency (fructose intolerance).
Serum lactate is in reference ranges in fasting patients with glycogen-storage disease type 0.
Liver function studies provide evidence of mild hepatocellular damage in patients with mild elevations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.Plasma amino-acid analysis shows plasma alanine levels as in reference ranges during a fast.
Diagnosis of canine phosphofructokinase deficiency is similar to the blood tests used in diagnosis of humans. Blood tests measuring the total erythrocyte PFK activity are used for definitive diagnosis in most cases. DNA testing for presence of the condition is also available.
Treatment mostly takes the form of supportive care. Owners are advised to keep their dogs out of stressful or exciting situations, avoid high temperature environments and strenuous exercise. It is also important for the owner to be alert for any signs of a hemolytic episode. Dogs carrying the mutated form of the gene should be removed from the breeding population, in order to reduce incidence of the condition.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
There is some laboratory tests that may aid in diagnosis of GSD-V. A muscle biopsy will note the absence of myophosphorylase in muscle fibers. In some cases, acid-Schiff stained glycogen can be seen with microscopy.
Genetic sequencing of the PYGM gene (which codes for the muscle isoform of glycogen phosphorylase) may be done to determine the presence of gene mutations, determining if McArdle's is present. This type of testing is considerably less invasive than a muscle biopsy.
The physician can also perform an ischemic forearm exercise test as described above. Some findings suggest a nonischemic test could be performed with similar results. The nonischemic version of this test would involve not cutting off the blood flow to the exercising arm. Findings consistent with McArdle’s disease would include a failure of lactate in venous blood and exaggerated ammonia levels. These findings would indicate a severe muscle glycolytic block. Ammonia arises from the impaired buffering of ADP, which leads to an increase in AMP concentration resulting in an increase in AMP deamination.
Physicians may also check resting levels of creatine kinase, which are moderately increased in 90% of patients. In some, the level is increased by multitudes - a person without GSD-V will have a CK between 60 and 400IU/L, while a person with the syndrome may have a level of 5,000 IU/L at rest, and may increase to 35,000 IU/L or more with muscle exertion. This can help distinguish McArdle's syndrome from carnitine palmitoyltransferase II deficiency (CPT-II), a lipid-based metabolic disorder which prevents fatty acids from being transported into mitochondria for use as an energy source. Also, serum electrolytes and endocrine studies (such as thyroid function, parathyroid function and growth hormone levels) will also be completed. Urine studies are required only if rhabdomyolysis is suspected. Urine volume, urine sediment and myoglobin levels would be ascertained. If rhabdomyolysis is suspected, serum myoglobin, creatine kinase, lactate dehydrogenase, electrolytes and renal function will be checked.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Hyperglycerolemia is caused by excess glycerol in the bloodstream. People with more severe cases of glycerol kinase deficiency may have a deletion of the GK gene that is large enough to see by routine cytogenetic evaluation. It has been found an x-linked recessive inheritance pattern of the trait when a study was conducted on a grandfather and grandson. In addition, there is a high prevalence of [diabetes mellitus] in this family. There is no known prevention for hyperglycerolemia because it is caused by a mutation or deletion of an individual's genetic code.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
The usual initial investigations include chest X ray, electrocardiogram and echocardiography. Typical findings are those of an enlarged heart with non specific conduction defects. Biochemical investigations include serum creatine kinase (typically increased 10 fold) with lesser elevations of the serum aldolase, aspartate transaminase, alanine transaminase and lactic dehydrogenase. Diagnosis is made by estimating the acid alpha glucosidase activity in either skin biopsy (fibroblasts), muscle biopsy (muscle cells) or in white blood cells. The choice of sample depends on the facilities available at the diagnostic laboratory.
In the late onset form, the findings on investigation are similar to those of the infantile form with the caveat that the creatinine kinases may be normal in some cases. The diagnosis is by estimation of the enzyme activity in a suitable sample.
On May 17, 2013 the Secretary's Discretionary Advisory Committee on Heritable Diseases in Newborns and Children (DACHDNC) approved a recommendation to the Secretary of Health and Human Services to add Pompe to the Recommended Uniform Screening Panel (RUSP). The HHS secretary must first approve the recommendation before the disease is formally added to the panel.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
A genetic test is available for Type 1 PSSM. This test requires a blood or hair sample, and is less-invasive than muscle biopsy. However, it may be less useful for breeds that are more commonly affected by Type 2 PSSM, such as light horse breeds. Often a muscle biopsy is recommended for horses displaying clinical signs of PSSM but who have negative results for GYS1 mutation.
A muscle biopsy may be taken from the semimembranosis or semitendinosis (hamstring) muscles. The biopsy is stained for glycogen, and the intensity of stain uptake in the muscle, as well as the presence of any inclusions, helps to determine the diagnosis of PSSM. This test is the only method for diagnosing Type 2 PSSM. Horses with Type 1 PSSM will usually have between 1.5-2 times the normal levels of glycogen in their skeletal muscle. While abnormalities indicating muscle damage can be seen on histologic sections of muscle as young as 1 month of age, abnormal polysaccharide accumulation may take up to 3 years to develop.
Supervised exercise programs have been shown in small studies to improve exercise capacity by several measures.
Oral sucrose treatment (for example a sports drink with 75 grams of sucrose in 660 ml.) taken 30 minutes prior to exercise has been shown to help improve exercise tolerance including a lower heart rate and lower perceived level of exertion compared with placebo.
This condition is sometimes mistaken for fatty acid and ketogenesis disorders such as Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD), other long-chain fatty acid oxidation disorders such as Carnitine palmitoyltransferase II deficiency (CPT-II) and Reye syndrome.
The initial workup of abetalipoproteinemia typically consists of stool sampling, a blood smear, and a fasting lipid panel though these tests are not confirmatory. As the disease is rare, though a genetics test is necessary for diagnosis, it is generally not done initially.
Acanthocytes are seen on blood smear. Since there is no or little assimilation of chylomicrons, their levels in plasma remains low.
The inability to absorb fat in the ileum will result in steatorrhea, or fat in the stool. As a result, this can be clinically diagnosed when foul-smelling stool is encountered. Low levels of plasma chylomicron are also characteristic.
There is an absence of apolipoprotein B. On intestinal biopsy, vacuoles containing lipids are seen in enterocytes. This disorder may also result in fat accumulation in the liver (hepatic steatosis). Because the epithelial cells of the bowel lack the ability to place fats into chylomicrons, lipids accumulate at the surface of the cell, crowding the functions that are necessary for proper absorption.
No treatment is indicated for essential fructosuria, while the degree of fructosuria depends on the dietary fructose intake, it does not have any clinical manifestations. The amount of fructose routinely lost in urine is quite small. Other errors in fructose metabolism have greater clinical significance. Hereditary fructose intolerance, or the presence of fructose in the blood (fructosemia), is caused by a deficiency of aldolase B, the second enzyme involved in the metabolism of fructose. This enzyme deficiency results in an accumulation of fructose-1-phosphate, which inhibits the production of glucose and results in diminished regeneration of adenosine triphosphate. Clinically, patients with hereditary fructose intolerance are much more severely affected than those with essential fructosuria, with elevated uric acid, growth abnormalities and can result in coma if untreated.
In horses: it has been reported in American Quarter Horses and related breeds.
In cats: the disease has been reported in the Norwegian Forest Cat, where it causes skeletal muscle, heart, and CNS degeneration in animals greater than 5 months old. It has not been associated with cirrhosis or liver failure.
A diagnosis of essential fructosuria is typically made after a positive test for reducing substances in the urine. The excretion of fructose in the urine is not constant, it depends largely on dietary intake.