Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:
- Newborn screening test
- Genetic testing
- Urine test
The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.
Most individuals with SBCADD are identified through newborn screening, where they present with an elevation of a five carbon acylcarnitine species. Confirmatory testing includes plasma and urine analysis to identify the carnitine and glycine conjugates of 2-methylbutyryl-CoA.
Liver biopsy for microscopic analysis and enzyme assay is required for definitive diagnosis. Diagnosis may include linkage analysis in families with affected members and sequencing of the entire coding region of the GSY2 gene for mutations.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
Serum glucose levels are measured to document the degree of hypoglycemia. Serum electrolytes calculate the anion gap to determine presence of metabolic acidosis; typically, patients with glycogen-storage disease type 0 (GSD-0) have an anion gap in the reference range and no acidosis. See the Anion Gap calculator.
Serum lipids (including triglyceride and total cholesterol) may be measured. In patients with glycogen-storage disease type 0, hyperlipidemia is absent or mild and proportional to the degree of fasting.
Urine (first voided specimen with dipstick test for ketones and reducing substances) may be analyzed. In patients with glycogen-storage disease type 0, urine ketones findings are positive, and urine-reducing substance findings are negative. However, urine-reducing substance findings are positive (fructosuria) in those with fructose 1-phosphate aldolase deficiency (fructose intolerance).
Serum lactate is in reference ranges in fasting patients with glycogen-storage disease type 0.
Liver function studies provide evidence of mild hepatocellular damage in patients with mild elevations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.Plasma amino-acid analysis shows plasma alanine levels as in reference ranges during a fast.
Diagnosis of canine phosphofructokinase deficiency is similar to the blood tests used in diagnosis of humans. Blood tests measuring the total erythrocyte PFK activity are used for definitive diagnosis in most cases. DNA testing for presence of the condition is also available.
Treatment mostly takes the form of supportive care. Owners are advised to keep their dogs out of stressful or exciting situations, avoid high temperature environments and strenuous exercise. It is also important for the owner to be alert for any signs of a hemolytic episode. Dogs carrying the mutated form of the gene should be removed from the breeding population, in order to reduce incidence of the condition.
Pyruvate dehydrogenase deficiency can be diagnosed via the following methods:
- Blood test (Lactate and pyruvate levels)
- Urine analysis
- Magnetic resonance spectroscopy
- MRI
Diagnosis of Fatty-acid metabolism disorder requires extensive lab testing.
Normally, in cases of hypoglycaemia, triglycerides and fatty acids are metabolised to provide glucose/energy. However, in this process, ketones are also produced and ketotic hypoglycaemia is expected. However, in cases where fatty acid metabolism is impaired, a non-ketotic hypoglycaemia may be the result, due to a break in the metabolic pathways for fatty-acid metabolism.
The differential diagnosis of pyruvate dehydrogenase deficiency can consist of either D-Lactic acidosis or abnormalities associated with gluconeogenesis.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
There are no methods for preventing the manifestation of the pathology of MSUD in infants with two defective copies of the BCKD gene. However, genetic counselors may consult with couples to screen for the disease via DNA testing. DNA testing is also available to identify the disease in an unborn child in the womb.
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
On 9 May 2014, the UK National Screening Committee (UK NSC) announced its recommendation to screen every newborn baby in the UK for four further genetic disorders as part of its NHS Newborn Blood Spot Screening programme, including maple syrup urine disease.
Newborn screening for maple syrup urine disease involves analyzing the blood of 1–2 day-old newborns through tandem mass spectrometry. The blood concentration of leucine and isoleucine is measured relative to other amino acids to determine if the newborn has a high level of branched-chain amino acids. Once the newborn is 2–3 days old the blood concentration of branched-chain amino acids like leucine is greater than 1000 µmol/L and alternative screening methods are used. Instead, the newborn’s urine is analyzed for levels of branched-chain alpha-hydroxyacids and alpha-ketoacids.
There is some laboratory tests that may aid in diagnosis of GSD-V. A muscle biopsy will note the absence of myophosphorylase in muscle fibers. In some cases, acid-Schiff stained glycogen can be seen with microscopy.
Genetic sequencing of the PYGM gene (which codes for the muscle isoform of glycogen phosphorylase) may be done to determine the presence of gene mutations, determining if McArdle's is present. This type of testing is considerably less invasive than a muscle biopsy.
The physician can also perform an ischemic forearm exercise test as described above. Some findings suggest a nonischemic test could be performed with similar results. The nonischemic version of this test would involve not cutting off the blood flow to the exercising arm. Findings consistent with McArdle’s disease would include a failure of lactate in venous blood and exaggerated ammonia levels. These findings would indicate a severe muscle glycolytic block. Ammonia arises from the impaired buffering of ADP, which leads to an increase in AMP concentration resulting in an increase in AMP deamination.
Physicians may also check resting levels of creatine kinase, which are moderately increased in 90% of patients. In some, the level is increased by multitudes - a person without GSD-V will have a CK between 60 and 400IU/L, while a person with the syndrome may have a level of 5,000 IU/L at rest, and may increase to 35,000 IU/L or more with muscle exertion. This can help distinguish McArdle's syndrome from carnitine palmitoyltransferase II deficiency (CPT-II), a lipid-based metabolic disorder which prevents fatty acids from being transported into mitochondria for use as an energy source. Also, serum electrolytes and endocrine studies (such as thyroid function, parathyroid function and growth hormone levels) will also be completed. Urine studies are required only if rhabdomyolysis is suspected. Urine volume, urine sediment and myoglobin levels would be ascertained. If rhabdomyolysis is suspected, serum myoglobin, creatine kinase, lactate dehydrogenase, electrolytes and renal function will be checked.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
A small number of genetic variants have been repeatedly associated with DPD deficiency, such as IVS14+1G>A mutation in intron 14 coupled with exon 14 deletion (a.k.a. DPYD*2A), 496A>G in exon 6; 2846A>T in exon 22 and T1679G (a.k.a. DPYD*13) in exon 13. However, testing patients for these allelic variants usually show high specificity (i.e., bearing the mutation means that severe toxicity will occur indeed)but very low sentivity (i.e., not bearing the mutation does not mean that there is no risk for severe toxicities). Alternatively, phenotyping DPD using ex-vivo enzymatic assay or surrogate testing (i.e., monitoring physiological dihydrouracil to uracil ratio in plasma) has been presented as a possible upfront strategy to detect DPD deficiency. 5-FU test dose (i.e., preliminary administration of a small dose of 5-FU with pharmacokinetics evaluation) has been proposed as another possible alternative strategy to secure the use of fluoropyrimidine drugs.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
Babies with this disorder are usually healthy at birth. The signs and symptoms may not appear until later in infancy or childhood and can include poor feeding and growth (failure to thrive), a weakened and enlarged heart (dilated cardiomyopathy), seizures, and low numbers of red blood cells (anemia). Another feature of this disorder may be very low blood levels of carnitine (a natural substance that helps convert certain foods into energy).
Isobutyryl-CoA dehydrogenase deficiency may be worsened by long periods without food (fasting) or infections that increase the body's demand for energy. Some individuals with gene mutations that can cause isobutyryl-CoA dehydrogenase deficiency may never experience any signs and symptoms of the disorder.
Supervised exercise programs have been shown in small studies to improve exercise capacity by several measures.
Oral sucrose treatment (for example a sports drink with 75 grams of sucrose in 660 ml.) taken 30 minutes prior to exercise has been shown to help improve exercise tolerance including a lower heart rate and lower perceived level of exertion compared with placebo.
In 2009, Monash Children's Hospital at Southern Health in Melbourne, Australia reported that a patient known as Baby Z became the first person to be successfully treated for molybdenum cofactor deficiency type A. The patient was treated with cPMP, a precursor of the molybdenum cofactor. Baby Z will require daily injections of cyclic pyranopterin monophosphate (cPMP) for the rest of her life.
A 2001 study followed up on 50 patients. Of these 38% died in childhood while the rest suffered from problems with morbidity.
The diagnosis is based on the biochemical findings (increased concentrations of lysine, arginine and ornithine in urine and low concentrations of these amino acids in plasma, elevation of urinary orotic acid excretion after protein-rich meals, and inappropriately high concentrations of serum ferritin and lactate dehydrogenase isoenzymes) and the screening of known mutations of the causative gene from a DNA sample.
Diagnosis of Molybdenum cofactor deficiency includes early seizures, low blood levels of uric acid, and high levels of sulphite, xanthine, and uric acid in urine. Additionally, the disease produces characteristic MRI images that can aid in diagnosis.
Congenital lactic acidosis can be suspected based on blood or cerebrospinal fluid tests showing high levels of lactate; the underlying genetic mutation can only be diagnosed with genetic testing.