Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
According to a study conducted in 2008 by the Pregnancy Risk Assessment Monitoring System (PRAMS) that interviewed women in 26 states in the United States, approximately 13% of women reported smoking during the last 3 months of pregnancy. Of women who smoked during the last 3 months of pregnancy, 52% reported smoking 5 or fewer cigarettes per day, 27% reported smoking 6 to 10 cigarettes per day, and 21% reported smoking 11 or more cigarettes per day.
In the United States, women whose pregnancies were unintended are 30% more likely to smoke during pregnancy than those whose pregnancies were intended.
It is recommended for women planning pregnancy to stop smoking. It is important to examine these effects because smoking before, during and after pregnancy is not an unusual behavior among the general population and can have detrimental health impacts, especially among both mother and child as a result. In 2011, approximately 10% of pregnant women in data collected from 24 states reported smoking during the last three months of their pregnancy.
The data presented is for comparative and illustrative purposes only, and may have been superseded by updated data.
Amniocentesis and chorionic villus sampling are procedures conducted to assess the fetus. A sample of amniotic fluid is obtained by the insertion of a needle through the abdomen and into the uterus. Chorionic villus sampling is a similar procedure with a sample of tissue removed rather than fluid. These procedures are not associated with pregnancy loss during the second trimester but they are associated with miscarriages and birth defects in the first trimester. Miscarriage caused by invasive prenatal diagnosis (chorionic villus sampling (CVS) and amniocentesis) is rare (about 1%).
According to American Congress of Obstetricians and Gynecologists, the main methods to calculate gestational age are:
- Directly calculating the days since the beginning of the last menstrual period.
- Early obstetric ultrasound, comparing the size of an embryo or fetus to that of a reference group of pregnancies of known gestational age (such as calculated from last menstrual periods), and using the mean gestational age of other embryos or fetuses of the same size. If the gestational age as calculated from an early ultrasound is contradictory to the one calculated directly from the last menstrual period, it is still the one from the early ultrasound that is used for the rest of the pregnancy.
- In case of in vitro fertilization, calculating days since oocyte retrieval or co-incubation and adding 14 days.
Due date estimation basically follows two steps:
- Determination of which time point is to be used as origin for gestational age, as described in section above.
- Adding the estimated gestational age at childbirth to the above time point. Childbirth on average occurs at a gestational age of 280 days (40 weeks), which is therefore often used as a standard estimation for individual pregnancies. However, alternative durations as well as more individualized methods have also been suggested.
"Naegele's rule" is a standard way of calculating the due date for a pregnancy when assuming a gestational age of 280 days at childbirth. The rule estimates the expected date of delivery (EDD) by adding a year, subtracting three months, and adding seven days to the origin of gestational age. Alternatively there are mobile apps, which essentially always give consistent estimations compared to each other and correct for leap year, while pregnancy wheels made of paper can differ from each other by 7 days and generally do not correct for leap year.
Furthermore, actual childbirth has only a certain probability of occurring within the limits of the estimated due date. A study of singleton live births came to the result that childbirth has a standard deviation of 14 days when gestational age is estimated by first trimester ultrasound, and 16 days when estimated directly by last menstrual period.
A review article in The New England Journal of Medicine based on a consensus meeting of the Society of Radiologists in Ultrasound in America (SRU) has suggested that miscarriage should be diagnosed only if any of the following criteria are met upon ultrasonography visualization:
The apprehension is not necessarily data driven and is a cautionary response to the lack of clinical studies in pregnant women. The indication is a trade-off between the adverse effects of the drug, the risks associated with intercurrent diseases and pregnancy complications, and the efficiency of the drug to prevent or ameliorate such risks. In some cases, the use of drugs in pregnancy carries benefits that outweigh the risks. For example, high fever is harmful for the fetus in the early months, thus the use of paracetamol (acetaminophen) is generally associated with lower risk than the fever itself. Similarly, diabetes mellitus during pregnancy may need intensive therapy with insulin to prevent complications to mother and baby. Pain management for the mother is another important area where an evaluation of the benefits and risks is needed. NSAIDs such as Ibuprofen and Naproxen are probably safe for use for a short period of time, 48–72 hours, once the mother has reached the second trimester. If taking aspirin for pain management the mother should never take a dose higher than 100 mg.
U.S. Code of Federal Regulations requires that certain drugs and biological products must be labelled very specifically with respect to their effects on pregnant populations, including a definition of a "pregnancy category." These rules are enforced by the Food and Drug Administration (FDA). The FDA does not regulate labelling for all hazardous and non-hazardous substances and some potentially hazardous substances are not assigned a pregnancy category.
Australia’s categorisations system takes into account the birth defects, the effects around the birth or when the mother gives birth, and problems that will arise later in the child's life caused from the drug taken. The system places them into a category of their severity that the drug could cause to the infant when it crosses the placenta(Australian Government, 2014).
The pregnancy category of a medication is an assessment of the risk of fetal injury due to the pharmaceutical, if it is used as directed by the mother during pregnancy. It does "not" include any risks conferred by pharmaceutical agents or their metabolites in breast milk.
Every drug has specific information listed in its product literature. The British National Formulary used to provide a table of drugs to be avoided or used with caution in pregnancy, and did so using a limited number of key phrases, but now Appendix 4 (which was the Pregnancy table) has been removed. Appendix 4 is now titled "Intravenous Additives". However, information that was previously available in the former Appendix 4 (pregnancy) and Appendix 5 (breast feeding) is now available in the individual drug monographs.
The World Anti-Doping Agency (WADA) is the main regulatory organization looking into the issue of the detection of gene doping. Both direct and indirect testing methods are being researched by the organization. Directly detecting the use of gene therapy usually requires the discovery of recombinant proteins or gene insertion vectors, while most indirect methods involve examining the athlete in an attempt to detect bodily changes or structural differences between endogenous and recombinant proteins.
Indirect methods are by nature more subjective, as it becomes very difficult to determine which anomalies are proof of gene doping, and which are simply natural, though unusual, biological properties. For example, Eero Mäntyranta, an Olympic cross country skier, had a mutation which made his body produce abnormally high amounts of red blood cells. It would be very difficult to determine whether or not Mäntyranta's red blood cell levels were due to an innate genetic advantage, or an artificial one.
Medical abortions are those induced by abortifacient pharmaceuticals. Medical abortion became an alternative method of abortion with the availability of prostaglandin analogs in the 1970s and the antiprogestogen mifepristone (also known as RU-486) in the 1980s.
The most common early first-trimester medical abortion regimens use mifepristone in combination with a prostaglandin analog (misoprostol or gemeprost) up to 9 weeks gestational age, methotrexate in combination with a prostaglandin analog up to 7 weeks gestation, or a prostaglandin analog alone. Mifepristone–misoprostol combination regimens work faster and are more effective at later gestational ages than methotrexate–misoprostol combination regimens, and combination regimens are more effective than misoprostol alone. This regime is effective in the second trimester. Medical abortion regiments involving mifepristone followed by misoprostol in the cheek between 24 and 48 hours later are effective when performed before 63 days' gestation.
In very early abortions, up to 7 weeks gestation, medical abortion using a mifepristone–misoprostol combination regimen is considered to be more effective than surgical abortion (vacuum aspiration), especially when clinical practice does not include detailed inspection of aspirated tissue. Early medical abortion regimens using mifepristone, followed 24–48 hours later by buccal or vaginal misoprostol are 98% effective up to 9 weeks gestational age. If medical abortion fails, surgical abortion must be used to complete the procedure.
Early medical abortions account for the majority of abortions before 9 weeks gestation in Britain, France, Switzerland, and the Nordic countries. In the United States, the percentage of early medical abortions is far lower.
Medical abortion regimens using mifepristone in combination with a prostaglandin analog are the most common methods used for second-trimester abortions in Canada, most of Europe, China and India, in contrast to the United States where 96% of second-trimester abortions are performed surgically by dilation and evacuation.
Up to 15 weeks' gestation, suction-aspiration or vacuum aspiration are the most common surgical methods of induced abortion. "Manual vacuum aspiration" (MVA) consists of removing the fetus or embryo, placenta, and membranes by suction using a manual syringe, while "electric vacuum aspiration" (EVA) uses an electric pump. These techniques differ in the mechanism used to apply suction, in how early in pregnancy they can be used, and in whether cervical dilation is necessary.
MVA, also known as "mini-suction" and "menstrual extraction", can be used in very early pregnancy, and does not require cervical dilation. Dilation and curettage (D&C), the second most common method of surgical abortion, is a standard gynecological procedure performed for a variety of reasons, including examination of the uterine lining for possible malignancy, investigation of abnormal bleeding, and abortion. Curettage refers to cleaning the walls of the uterus with a curette. The World Health Organization recommends this procedure, also called "sharp curettage," only when MVA is unavailable.
From the 15th week of gestation until approximately the 26th, other techniques must be used. Dilation and evacuation (D&E) consists of opening the cervix of the uterus and emptying it using surgical instruments and suction. After the 16th week of gestation, abortions can also be induced by intact dilation and extraction (IDX) (also called intrauterine cranial decompression), which requires surgical decompression of the fetus's head before evacuation. IDX is sometimes called "partial-birth abortion", which has been federally banned in the United States.
In the third trimester of pregnancy, induced abortion may be performed surgically by intact dilation and extraction or by hysterotomy. Hysterotomy abortion is a procedure similar to a caesarean section and is performed under general anesthesia. It requires a smaller incision than a caesarean section and is used during later stages of pregnancy.
First-trimester procedures can generally be performed using local anesthesia, while second-trimester methods may require deep sedation or general anesthesia.
Depending on gestational age the differential diagnoses for abdominal pregnancy include miscarriage, intrauterine fetal death, placental abruption, an acute abdomen with an intrauterine pregnancy and a fibroid uterus with an intrauterine pregnancy .
The World Anti-Doping Agency (WADA) determined that non therapeutic form of genetic manipulation for enhancement of athletic performance is not allowed in sport. The WADA code implemented guidelines to determine if said technology should be prohibited in sport. If two of the three conditions are met, then the technology is prohibited in sport; harmful to one's health, performance enhancing, and/or against the "spirit of sport". The high risks associated with gene therapy can be outweighed by the potential save the lives of individuals with diseases. According to Alain Fischer, who was involved in clinical trials of gene therapy in children with severe combined immunodeficiency, "Only people who are dying would have reasonable grounds for using it. Using gene therapy for doping is ethically unacceptable and scientifically stupid." As seen with past cases, including the steroid tetrahydrogestrinone THG, athletes may choose to incorporate risky genetic technologies into their training regimes.
The mainstream perspective is that gene doping is dangerous and unethical, as is any application of a therapeutic intervention for non-therapeutic or enhancing purposes, and that it compromises the ethical foundation of medicine and the spirit of sport. Others, who support human enhancement on broader grounds, or who see a false dichotomy between "natural" and "artificial" or a denial of the role of technology in improving athletic performance, do not oppose or support gene doping.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Opinions differ about optimal screening and diagnostic measures, in part due to differences in population risks, cost-effectiveness considerations, and lack of an evidence base to support large national screening programs. The most elaborate regimen entails a random blood glucose test during a booking visit, a screening glucose challenge test around 24–28 weeks' gestation, followed by an OGTT if the tests are outside normal limits. If there is a high suspicion, a woman may be tested earlier.
In the United States, most obstetricians prefer universal screening with a screening glucose challenge test. In the United Kingdom, obstetric units often rely on risk factors and a random blood glucose test. The American Diabetes Association and the Society of Obstetricians and Gynaecologists of Canada recommend routine screening unless the woman is low risk (this means the woman must be younger than 25 years and have a body mass index less than 27, with no personal, ethnic or family risk factors) The Canadian Diabetes Association and the American College of Obstetricians and Gynecologists recommend universal screening. The U.S. Preventive Services Task Force found there is insufficient evidence to recommend for or against routine screening.
Some pregnant women and careproviders choose to forgo routine screening due to the absence of risk factors, however this is not advised due to the large proportion of women who develop gestational diabetes despite having no risk factors present and the dangers to the mother and baby if gestational diabetes remains untreated.
In terms of ovarian reserve, a typical woman has 12% of her reserve at age 30 and has only 3% at age 40. 81% of variation in ovarian reserve is due to age alone, making age the most important factor in female infertility.
The most common methods of checking the status of the ovarian reserve is to perform a blood test on day 3 of the menstrual cycle to measure serum FSH level, alternatively a blood test to measure the serum AMH level can give similar information. Transvaginal ultrasound can also be used to “count the number of follicles” and this procedure is called Antral Follicle Count.
The American College of Obstetricians and Gynecologists recommends ovarian reserve testing should be performed for women older than 35 years who have not conceived after 6 months of attempting pregnancy and women at higher risk of diminished ovarian reserve, such as those with a history of cancer treated with gonadotoxic therapy, pelvic irradiation, or both; those with medical conditions who were treated with gonadotoxic therapies; or those who had ovarian surgery for endometriomas.
It is important to recognize that a poor result from ovarian reserve testing does not signify an absolute inability to conceive and should not be the sole criterion considered to limit or deny access to infertility treatment.
Advanced abdominal pregnancy refers to situations where the pregnancy continues past 20 weeks of gestation (versus early abdominal pregnancy < 20 weeks). In those situations, live births have been reported in academic journals and also in the lay press where the babies are not uncommonly referred to as 'Miracle babies'. A patient may carry a dead fetus but will not go into labor. Over time, the fetus calcifies and becomes a lithopedion.
It is generally recommended to perform a laparotomy when the diagnosis of an abdominal pregnancy is made. However, if the baby is alive and medical support systems are in place, careful watching could be considered to bring the baby to viability. Women with an abdominal pregnancy will not go into labor. Delivery in a case of an advanced abdominal pregnancy will have to be via laparotomy. The survival of the baby is reduced and high perinatal mortality rates between 40–95% have been reported.
Babies of abdominal pregnancies are prone to birth defects due to compression in the absence of the uterine wall and the often reduced amount of amniotic fluid surrounding the unborn baby. The rate of malformations and deformations is estimated to be about 21%; typical deformations are facial and cranial asymmetries and joint abnormalities and the most common malformations are limb defects and central nervous malformations.
Once the baby has been delivered placental management becomes an issue. In normal deliveries the contraction of uterus provides a powerful mechanism to control blood loss, however, in an abdominal pregnancy the placenta is located over tissue that cannot contract and attempts of its removal may lead to life-threatening blood loss. Thus blood transfusion is frequent in the management of patients with this kind of pregnancy, with others even using tranexamic acid and recombinant factor VIIa, which both minimize blood loss.
Generally, unless the placenta can be easily tied off or removed, it may be preferable to leave it in place and allow for a natural regression. This process may take several months and can be monitored by clinical examination, checking human chorionic gonadotropin levels and by ultrasound scanning (in particular using doppler ultrasonography. Use of methotrexate to accelerate placental regression is controversial as the large amount of necrotic tissue is a potential site for infection, mifepristone has also be used to promote placental regression. Placental vessels have also been blocked by angiographic embolization. Complications of leaving the placenta can include residual bleeding, infection, bowel obstruction, pre-eclampsia (which may all necessitate further surgery) and failure to breast feed due to placental hormones.
Outcome with abdominal pregnancy can be good for the baby and mother, Lampe described an abdominal pregnancy baby and her mother who were well more than 22 years after surgery.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
Hormonal and other changes in pregnancy affect physical performance. In the first three months it is known that a woman’s body produces a natural surplus of red blood cells, which are well supplied with oxygen-carrying hemoglobin, in order to support the growing fetus. A study of athletes before and after pregnancy by Professor James Pivarnik at the Human Energy Research laboratory in Michigan State University has found there is a 60 per cent increase in blood volume and that this could improve the body’s ability to carry oxygen to muscles by up to 30 percent. This would have obvious positive effects on aerobic capacity. Other potential advantages are obtained from the surge in hormones that pregnancy induces, predominantly progesterone and estrogen, but also testosterone, which could increase muscle strength. Increases in hormones like relaxin, which loosens the hip joints to prepare for childbirth, may have a performance-enhancing effect on joint mobility.
Several world records have been set by female athletes shortly after giving birth to their first child. This is accepted as a natural and unintended event.
Women with GDM may have high glucose levels in their urine (glucosuria). Although dipstick testing is widely practiced, it performs poorly, and discontinuing routine dipstick testing has not been shown to cause underdiagnosis where universal screening is performed. Increased glomerular filtration rates during pregnancy contribute to some 50% of women having glucose in their urine on dipstick tests at some point during their pregnancy. The sensitivity of glucosuria for GDM in the first 2 trimesters is only around 10% and the positive predictive value is around 20%.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
Abortion doping refers to the rumoured practice of purposely inducing pregnancy for athletic performance-enhancing benefits, then aborting the pregnancy.
Familial dysautonomia is inherited in an autosomal recessive pattern, which means 2 copies of the gene in each cell are altered. If both parents are shown to be carriers by genetic testing, there is a 25% chance that the child will produce FD. Prenatal diagnosis for pregnancies at increased risk for FD by amniocentesis (for 14–17 weeks) or chorionic villus sampling (for 10–11 weeks) is possible.