Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2014 study classified cases into three types—epidermolysis bullosa simplex (EBS), junctional epidermolysis bullosa (JEB), and dystrophic epidermolysis bullosa (DEB) -- and reviewed their times of death. The first two types tended to die in infancy and the last in early adulthood.
Epidermolysis bullosa can be diagnosed either by a skin (punch) biopsy at the edge of a wound with immunofluorescent mapping, or via blood sample and genetic testing.
Mild forms of IBS should be diagnosable from appearance and patient history alone. Severe cases of IBS are hard to distinguish from mild EHK.
A skin biopsy shows a characteristic damaged layer in the upper spinous level of the skin. Again it may be difficult to distinguish from EHK.
The gene causing IBS is known and so a definite diagnosis can be given by genetic testing.
Lichen planus has a unique microscopic appearance that is similar between cutaneous, mucosal and oral. A Periodic acid-Schiff stain of the biopsy may be used to visualise the specimen. Histological features seen include:
- thickening of the stratum corneum both with nuclei present (parakeratosis) and without (orthokeratosis). Parakeratosis is more common in oral variants of lichen planus.
- thickening of the stratum granulosum
- thickening of the stratum spinosum (acanthosis) with formation of colloid bodies (also known as Civatte bodies, Sabouraud bodies) that may stretch down to the lamina propria.
- liquefactive degeneration of the stratum basale, with separation from the underlying lamina propria, as a result of desmosome loss, creating small spaces (Max Joseph spaces).
- Infiltration of T cells in a band-like pattern into the dermis "hugging" the basal layer.
- Development of a "saw-tooth" appearance of the rete pegs, which is much more common in non-oral forms of lichen planus.
One of the biggest risks factors faced by the affected foals is susceptibility to secondary infection. Within three to eight days after birth, the foal may die from infection or is euthanized for welfare reasons.
The condition can be diagnosed via exam that reveals; generalized redness; thick, generally dark, scales that tend to form parallel rows of spines or ridges,especially near large joints; the skin is fragile and blisters easily following trauma; extent of blistering and amount of scale is variable
Immunoprecipitation, immunoblotting and enzyme-link immunosorbent assay (ELISA)
Poot et al. 2013 determined that immunoprecipitation for antibodies against envoplakin and periplakin or alpha2-macroglobulin-like–1 is the most sensitive test. However, alpha2-macroglobulin-like-1 can also be detected in patients with toxic epidermal necrosis.
The differential diagnosis for OLP includes:
- Other oral vesiculo-ulcerative conditions such as Pemphigus vulgaris and Benign mucous membrane pemphigoid
- Lupus erythematosus, with lesions more commonly occur on the palate and appear as centrally ulcerated or erythematous with radiating white striae. In contrast, OLP and lichenoid reactions rarely occur on the palate, and the striae are randomly arranged rather than radial.
- Chronic ulcerative stomatitis
- Frictional keratosis and Morsicatio buccarum (chronic cheek biting)
- Oral leukoplakia
- Oral candidiasis
Patients with high concentration of antibodies show intercellular, intraepidermal antibodies as well as along the dermoepidermal junction. Patients with low concentration of antibodies only present with them inside the cells (intercellular).
If the results are negative, perform the additional assays regardless. Cases have been confirmed that reported with initial negative DIF and IDIF tests.
Biopsies of the skin may be performed to identify the cleavage that takes place at the dermal-epidermal junction. Another test that can aid in a diagnosis of JEB is the positive Nikolsky’s sign. By applying pressure to the skin, transverse movements can indicate slipping between the dermal and epidermal layers. An easier and more definitive test is through polymerase chain reaction (PCR). This method allows mane and tail samples to be genetically tested for the mutated genes that cause the condition. Hair samples must be pulled, not cut, with roots attached. The test can detect both JEB1 and JEB2. Testing costs around $35.00 US per sample.
Epidermolysis bullosa simplex may be divided into multiple types:
There is no cure for IBS but in the future gene therapy may offer a cure.
Treatments for IBS generally attempt to improve the appearance of the skin and the comfort of the sufferer. This is done by exfoliating and increasing the moisture of the skin. Common treatments include:
- Emollients: moisturisers, petroleum jelly or other emolients are used, often several times a day, to increase the moisture of the skin.
- Baths: long baths (possibly including salt) several times a week are used to soften the skin and allow exfoliation.
- Exfoliating creams: creams containing keratolytics such as urea, salicylic acid and lactic acid may be useful.
- Antiseptic washes: antiseptics may be used to kill bacteria in the skin and prevent odour.
- Retenoids: very severe cases may use oral retinoids to control symptoms but these have many serious side effects including, in the case of IBS, increased blistering.
In 2015, an Italian team of scientists, led by Michele De Luca at the University of Modena, successfully treated a seven-year-old Syrian boy who had lost 80% of his skin. The boy's family had fled Syria for Germany in 2013. Upon seeking treatment in Germany, he had lost the epidermis from almost his entire body, with only his head and a patch on his left leg remaining. The group of Italian scientists had previously pioneered a technique to regenerate healthy skin in the laboratory. They used this treatment on the boy by taking a sample from his remaining healthy skin and then genetically modifying the skin cells, using a virus to deliver a healthy version of the LAMB3 gene into the nuclei. The patient underwent two operations in autumn 2015, where the new epidermis was attached. The graft had integrated into the lower layers of skin within a month, curing the boy. The introduction of genetic changes could increase the chances of skin cancer in other patients, but if the treatment is deemed safe in the long term, scientists believe the approach could be used to treat other skin disorders.
The challenge has always been how to deliver the siRNA using a topical method or retroviral vectors and ex vivo gene transfer. In 2011/12 a team at Northwestern University claim to have solved the topical delivery of siRNA dilemma. Personalized siRNA can be delivered in a commercial moisturizer or phosphate-buffered saline, and do not require barrier disruption or transfection agents, such as liposomes, peptides, or viruses. "Topical application of nucleic acids offers many potential therapeutic advantages for suppressing genes in the skin, and potentially for systemic gene delivery. However, the epidermal barrier typically precludes entry of gene-suppressing therapy unless the barrier is disrupted. We now show that spherical nucleic acid nanoparticle conjugates (SNA-NCs), gold cores surrounded by a dense shell of highly oriented, covalently immobilized siRNA, freely penetrate almost 100% of keratinocytes in vitro, mouse skin, and human epidermis within hours after application."
This new discovery may soon offer hope to all suffering from mono-genetic diseases such as EHK. This may lead to promising personalized, topically delivered gene therapy of cutaneous tumors, skin inflammation, and dominant negative genetic skin disorders.
UPDATE: OCTOBER 2014
As of late, Paller reports "we are using a new nanotechnology-based technique called 'spherical nucleic acids' (SNAs) to suppress the production of the abnormal keratin 10 gene that is the most common change leading to epidermolytic ichthyosis. We continue to screen candidate SNAs to find a few that clearly suppress the abnormal keratin 10 gene much more than the normal keratin 10 gene. In the meantime, we have developed several tools towards this effort, which can also be used by other researchers. Most recently we've developed a special 'lentivirus reporter construct' in which we can see through changes in fluorescence whether or not our SNA works."
Dr. Paller and her team recently received more good news with regard to progressing their research. "We just received a grant from the National Institutes of Health (NIH) to continue this effort based on our preliminary data collected with FIRST's funding support. FIRST has been instrumental in furthering our research efforts related to ichthyosis," she said.
These include:
- "Generalized atrophic benign epidermolysis bullosa" is a skin condition that is characterized by onset at birth, generalized blisters and atrophy, mucosal involvement, and thickened, dystrophic, or absent nails.
- "Mitis junctional epidermolysis bullosa" (also known as "Nonlethal junctional epidermolysis bullosa") is a skin condition characterized by scalp and nail lesions, also associated with periorificial nonhealing erosions. Mitis junctional epidermolysis bullosa is most commonly seen in children between the ages of 4 and 10 years old.
- "Cicatricial junctional epidermolysis bullosa" is a skin condition characterized by blisters that heal with scarring. It was characterized in 1985.
Epidermolysis bullosa dystrophica or dystrophic EB (DEB) is an inherited disease affecting the skin and other organs.
"Butterfly child" is the colloquial name for a child born with the disease, as their skin is seen to be as delicate and fragile as that of a butterfly.
Epidermolysis bullosa simplex (EBS),is a disorder resulting from mutations in the genes encoding keratin 5 or keratin 14.
Blister formation of EBS occurs at the dermoepidermal junction. Sometimes EBS is called "epidermolytic".
The deficiency in anchoring fibrils impairs the adherence between the epidermis and the underlying dermis. The skin of DEB patients is thus highly susceptible to severe blistering.Collagen VII is also associated with the epithelium of the esophageal lining, and DEB patients may suffer from chronic scarring, webbing, and obstruction of the esophagus. Affected individuals are often severely malnourished due to trauma to the oral and esophageal mucosa and require feeding tubes for nutrition. They also suffer from iron-deficiency anemia of uncertain origin, which leads to chronic fatigue.
Open wounds on the skin heal slowly or not at all, often scarring extensively, and are particularly susceptible to infection. Many individuals bathe in a bleach and water mixture to fight off these infectionsThe chronic inflammation leads to errors in the DNA of the affected skin cells, which in turn causes squamous cell carcinoma (SCC). The majority of these patients die before the age of 30, either of SCC or complications related to DEB.
The chronic inflammatory state seen in recessive dystrophic epidermolysis bullosa (RDEB) may cause Small fiber peripheral neuropathy (SFN).; RDEB patients have reported the sensation of pain in line with neuropathic pain qualities.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Epidermolysis bullosa acquisita is a chronic subepidermal blistering disease associated with autoimmunity to type VII collagen within anchoring fibril structures that are located at the dermoepidermal junction.
Keratoacanthoma presents as a fleshy, elevated and nodular lesion with an irregular crater shape and a characteristic central hyperkeratotic core. Usually the patient will notice a rapidly growing dome-shaped tumor on sun-exposed skin.
If the entire lesion is removed, the pathologist will probably be able to differentiate between keratoacanthoma and squamous cell carcinoma. If only part of the lesion is removed, confident diagnosis may be impossible.
CGPD is known to be a temporary skin disease with a benign course. The skin papules typically resolve after a few months to a few years. After CGPD resolves, the skin may return to normal without scarring or may have small atrophic depressions with collagen loss, milia, or small pit-like scars.
Lethal acantholytic epidermolysis bullosa is a fatal genetic skin disorder caused by mutations in DSP
The differential diagnosis includes oral lichen planus, erythematous candidiasis, leukoplakia, lupus erythematosus, glossitis, and chemical burns. Atrophic glossitis is usually distinguished from benign migratory glossitis on the basis of the migrating pattern of the lesions and the presence of a whitish border, features which are not present in atrophic glossitis, which instead shows lesions which enlarge rather than migrate. Rarely, blood tests may be required to distinguish from glossitis associated with anemia or other nutritional deficiencies. Since the appearance and the history of the condition (i.e. migrating areas of depapillation) are so striking, there is rarely any need for biopsy. When biopsy is taken, the histopathologic appearance is quite similar to psoriasis:
- Hyperparakeratosis.
- Acanthosis.
- Subepithelial T lymphocyte inflammatory infiltrate.
- Migration of neutrophilic granulocytes into the epithelial layer, which may create superficial microabscesses, similar to the Munro's microabscesses described in pustular psoriasis.
Clinical evaluation and identification of characteristics papules may allow a dermatologist to diagnose Degos disease. The papules have a white center and are bordered with a red ring. After lesions begin to appear, the diagnosis for Degos disease can be supported by histological findings. Most cases will show a wedge-shaped connective tissue necoris in the deep corium. This shape is due to the blockage/occlusion of small arteries.
Individuals may be diagnosed with the benign form if only the papules are present. However, an individual may be diagnosed with the malignant form if involvement of other organs like the lungs, intestine and/or central nervous system occurs. The malignant, or systematic form of this condition may suddenly develop even after having papules present for several years. In order to quickly diagnose this shift to the malignant variant of the disease, it is important for individuals to have consistent follow-up evaluations.In these evaluations, depending on which organs are suspected to be involved, the following procedures and tests may be conducted: skin inspection, brain magnetic resonance tomography, colonoscopy, chest X-ray, and/or abdominal ultrasound.