Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diet and lifestyle are believed to play a large role in whether colorectal polyps form. Studies show there to be a protective link between consumption of cooked green vegetables, brown rice, legumes, and dried fruit and decreased incidence of colorectal polyps.
Screening for colonic polyps as well as preventing them has become an important part of the management of the condition. Medical societies have established guidelines for colorectal screening in order to prevent adenomatous polyps and to minimize the chances of developing colon cancer. It is believed that some changes in the diet might be helpful in preventing polyps from occurring but there is no other way to prevent the polyps from developing into cancerous growths than by detecting and removing them.
According to the guidelines established by the American Cancer Society, individuals who reach the age of 50 should perform an occult blood test yearly. Colon polyps as they grow can sometimes cause bleeding within the intestine, which can be detected with the help of this test. Also, persons in their 50s are recommended to have flexible sigmoidoscopies performed once in 3 to 5 years to detect any abnormal growth which could be an adenomatous polyp. If adenomatous polyps are detected during this procedure, it is most likely that the patient will have to undergo a colonoscopy. Medical societies recommend colonoscopies every ten years starting at age 50 as a necessary screening practice for colon cancer. The screening provides an accurate image of the intestine and also allows the removal of the polyp, if found. Once an adenomatous polyp is identified during colonoscopy, there are several methods of removal including using a snare or a heating device. Colonoscopies are preferred over sigmoidoscopies because they allow the examination of the entire colon; a very important aspect, considering that more than half of the colonic polyps occur in the upper colon, which is not reached during sigmoidoscopies.
It has been statistically demonstrated that screening programs are effective in reducing the number of deaths caused by colon cancer due to adenomatous polyps. While there are risks of complications associated with colonoscopies, those risks are extremely low at approximately 0.35 percent. For comparison, the lifetime risk of developing colon cancer is around 6 percent. As there is a small likelihood of recurrence, surveillance after polyp removal is recommended.
Colorectal polyps can be detected using a faecal occult blood test, flexible sigmoidoscopy, colonoscopy, virtual colonoscopy, digital rectal examination, barium enema or a pill camera.
Malignant potential is associated with
- degree of dysplasia
- Type of polyp (e.g. villous adenoma):
- Tubular Adenoma: 5% risk of cancer
- Tubulovillous adenoma: 20% risk of cancer
- Villous adenoma: 40% risk of cancer
- Size of polyp:
- <1 cm =<1% risk of cancer
- 1 cm=10% risk of cancer
- 2 cm=15% risk of cancer
Normally an adenoma which is greater than 0.5 cm is treated
Complete removal of a SSA is considered curative.
Several SSAs confer a higher risk of subsequently finding colorectal cancer and warrant more frequent surveillance. The surveillance guidelines are the same as for other colonic adenomas. The surveillance interval is dependent on (1) the number of adenomas, (2) the size of the adenomas, and (3) the presence of high-grade microscopic features.
Some suggestions for surveillance for cancer include the following:
- Small intestine with small bowel radiography every 2 years,
- Esophagogastroduodenoscopy and colonoscopy every 2 years,
- CT scan or MRI of the pancreas yearly,
- Ultrasound of the pelvis (women) and testes (men) yearly,
- Mammography (women) from age 25 annually livelong, and
- Papanicolaou smear (Pap smear) every year
Follow-up care should be supervised by a physician familiar with Peutz–Jeghers syndrome. Genetic consultation and counseling as well as urological and gynecological consultations are often needed.
People with juvenile polyps may require yearly upper and lower endoscopies with polyp excision and cytology. Their siblings may also need to be screened regularly. Malignant transformation of polyps requires surgical colectomy.
There is a risk of development of cancer with fundic gland polyposis, but it varies based on the underlying cause of the polyposis. The risk is highest with congenital polyposis syndromes, and is lowest in acquired causes. As a result, it is recommended that patients with multiple fundic polyps have a colonoscopy to evaluate the colon. If there are polyps seen on colonoscopy, genetic testing and testing of family members is recommended.
In the gastric adenocarcinoma associated with proximal polyposis of the stomach (GAPPS), there is a high risk of early development of proximal gastric adenocarcinoma.
It is still unclear which patients would benefit with surveillance gastroscopy, but most physicians recommend endoscopy every one to three years to survey polyps for dysplasia or cancer. In the event of high grade dysplasia, polypectomy, which is done through the endoscopy, or partial gastrectomy may be recommended. One study showed the benefit of NSAID therapy in regression of gastric polyps, but the efficacy of this strategy (given the side effects of NSAIDs) is still dubious.
Colon polyps are not commonly associated with symptoms. Occasionally rectal bleeding, and on rare occasions pain, diarrhea or constipation may occur because of colon polyps. Colon polyps are a concern because of the potential for colon cancer being present microscopically and the risk of benign colon polyps transforming over time into malignant ones. Since most polyps are asymptomatic, they are usually discovered at the time of colon cancer screening. Common screening methods are occult blood test, colonoscopy, sigmoidoscopy (usually flexible sigmoidoscopy, using a flexible endoscope, but more rarely the older rigid sigmoidoscopy, using a rigid endoscope), lower gastrointestinal series (barium enema), digital rectal examination (DRE), and virtual colonoscopy. The polyps are routinely removed at the time of colonoscopy either with a polypectomy snare (first description by P. Deyhle, Germany, 1970) or with biopsy forceps. If an adenomatous polyp is found with sigmoidoscopy or if a polyp is found with any other diagnostic modality, the patient must undergo colonoscopy for removal of the polyp(s). Even though colon cancer is usually not found in polyps smaller than 2.5 cm, all polyps found are removed since the removal of polyps reduces the future likelihood of developing colon cancer. When adenomatous polyps are removed, a repeat colonoscopy is usually performed in three to five years.
Most colon polyps can be categorized as sporadic.
Most polyps are benign and do not need to be removed. Polyps larger than 1 cm with co-occurring gallstones occurring in people over the age of 50 may have the gallbladder removed (cholecystectomy), especially if the polyps are several or appear malignant. Laparoscopic surgery is an option for small or solitary polyps.
The main criteria for clinical diagnosis are:
- Family history
- Mucocutaneous lesions causing patches of hyperpigmentation in the mouth and on the hands and feet. The oral pigmentations are the first on the body to appear, and thus play an important part in early diagnosis. Intraorally, they are most frequently seen on the gingiva, hard palate and inside of the cheek. The mucosa of the lower lip is almost invariably involved as well.
- Hamartomatous polyps in the gastrointestinal tract. These are benign polyps with an extraordinarily low potential for malignancy.
Having 2 of the 3 listed clinical criteria indicates a positive diagnosis. The oral findings are consistent with other conditions, such as Addison's disease and McCune-Albright syndrome, and these should be included in the differential diagnosis. 90–100% of patients with a clinical diagnosis of PJS have a mutation in the "STK11/LKB1" gene. Molecular genetic testing for this mutation is available clinically.
Most juvenile polyps are benign, however, malignancy can occur. The cumulative lifetime risk of colorectal cancer is 39% in patients with juvenile polyposis syndrome.
CT scan can show the full extent of the polyp, which may not be fully appreciated with physical examination alone. Imaging is also required for planning surgical treatment. On a CT scan, a nasal polyp generally has an attenuation of 10–18 Hounsfield units, which is similar to that of mucus. Nasal polyps may have calcification.
Nasal polyps can be seen on physical examination inside of the nose and are often detected during the evaluation of symptoms. On examination, a polyp will appear as a visible mass in the nostril. Some polyps may be seen with anterior rhinoscopy (looking in the nose with a nasal speculum and a light), but frequently, they are farther back in the nose and must be seen by nasal endoscopy. Nasal endoscopy involves passing a small, rigid camera with a light source into the nose. An image is projected onto a screen in the office so the doctor can examine the nasal passages and sinuses in greater detail. The procedure is not generally painful, but the patient can be given a spray decongestant and local anesthetic to minimize discomfort.
Attempts have been made to develop scoring systems to determine the severity of nasal polyps. Proposed staging systems take into account the extent of polyps seen on endoscopic exam and the number of sinuses affected on CT imaging. This staging system is only partially validated, but in the future, may be useful for communicating the severity of disease, assessing treatment response, and planning treatment.
The serrated polyposis syndrome (SPS) is a relatively rare condition characterized by multiple and/or large serrated polyps of the colon. Diagnosis of this disease is made by the fulfillment of any of the World Health Organization’s (WHO) clinical criteria.
Polypoid lesions of the gallbladder affect approximately 5% of the adult population. The causes are uncertain, but there is a definite correlation with increasing age and the presence of gallstones (cholelithiasis). Most affected individuals do not have symptoms. The gallbladder polyps are detected during abdominal ultrasonography performed for other reasons.
The incidence of gallbladder polyps is higher among men than women. The overall prevalence among men of Chinese ancestry is 9.5%, higher than other ethnic types.
Zollinger–Ellison syndrome may be suspected when the above symptoms prove resistant to treatment, when the symptoms are especially suggestive of the syndrome, or when endoscopy is suggestive. The diagnosis is made through several laboratory tests and imaging studies:
- Secretin stimulation test, which measures evoked gastrin levels
- Fasting gastrin levels on at least three separate occasions
- Gastric acid secretion and pH (normal basal gastric acid secretion is less than 10 mEq/hour; in Zollinger–Ellison patients, it is usually more than 15 mEq/hour)
- An increased level of chromogranin A is a common marker of neuroendocrine tumors.
In addition, the source of the increased gastrin production must be determined using MRI or somatostatin receptor scintigraphy.
Other possible causes (eg differential diagnosis) of large folds within the stomach include: Zollinger-Ellison syndrome, cancer, infection (cytomegalovirus/CMV, histoplasmosis, syphilis), and infiltrative disorders such as sarcoidosis.
The large folds of the stomach, as seen in Ménétrier disease, are easily detected by x-ray imaging following a barium meal or by endoscopic methods. Endoscopy with deep mucosal biopsy (and cytology) is required to establish the diagnosis and exclude other entities that may present similarly. A non-diagnostic biopsy may lead to a surgically obtained full-thickness biopsy to exclude malignancy. CMV and helicobacter pylori serology should be a part of the evaluation.
Twenty-four-hour pH monitoring reveals hypochlorhydria or achlorhydria, and a chromium-labelled albumin test reveals increased GI protein loss. Serum gastrin levels will be within normal limits.
Fundic gland polyps are found in 0.8 to 1.9% of patients who undergo esophagogastroduodenoscopy, and are more common in middle aged women.
The most important consideration in evaluating patients with FGPs is distinguishing between sporadic form (patients without any other gastrointestinal condition, usually in middle age with female prevalence) and syndromic form. This is to ascertain the risk of development of gastric cancer, and to ascertain the risk of concomitant colon cancer.
FGPs can be found in association with the following genetic conditions:
- familial adenomatous polyposis
- attenuated familial adenomatous polyposis syndromes
- Zollinger-Ellison syndrome
- gastric adenocarcinoma associated with proxymal polyposis of the stomach (GAPPS): this condition, described in three families is characterized by development of antral adenomas and FGPs, with early development of severe dysplasia and gastric cancer, in absence of overt intestinal polyposis. This condition has been recently characterized by a point mutation in exon 1B of APC gene.
Sporadic FGPs have been associated with:
- chronic use of proton pump inhibitors (proposed by some authors, denied by others)
- "Helicobacter pylori" infection: there is a reverse relationship between infection and fundic gland polyps, and infection by "H pylori" causes polyps regression.
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
The symptoms due to bleeding are hematemesis and/or melena.
A Dieulafoy's lesion is difficult to diagnose, because of the intermittent pattern of bleeding. Endoscopically it is not easy to recognize and therefore sometimes multiple views have to be performed over a longer period. Today angiography is a good additional diagnostic, but then it can only be seen during a bleeding at that exact time.
The differential diagnosis of gastric outlet obstruction may include: early gastric carcinoma hiatal hernia, gastroesophageal reflux, adrenal insufficiency, and inborn errors of metabolism.
Other radiological studies frequently used to assess patients with chronic stomach problems include a barium swallow, where a dye is consumed and pictures of the esophagus and stomach are obtained every few minutes. Other tests include a 24-hour pH study, CT scans or MRI.
The most confirmatory investigation is endoscopy of upper gastrointestinal tract.
Laboratory
- Individuals with gastric outlet obstruction are often hypochloremic, hypokalemic, and alkalotic due to loss of hydrogen chloride and potassium. High urea and creatinine levels may also be observed if the patient is dehydrated.
Abdominal X-ray
- A gastric fluid level may be seen which would support the diagnosis.
Barium meal and follow through
- May show an enlarged stomach and pyloroduodenal stenosis.
Gastroscopy
- May help with cause and can be used therapeutically.
The lesion presents in young patients, so the differential for a "polyp", especially when the lymphoid component is crushed or dominant, would include a rhabdomyosarcoma, extramedullary plasmacytoma, and a neuroendocrine adenoma of the middle ear.
Immunohistochemistry is unnecessary for the diagnosis, but will highlight a mixed B- and T-cell population within the lymphoid component, without light chain (kappa or lambda) restriction. Any muscle markers would be negative.