Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
A doctor will test for prolactin blood levels in women with unexplained milk secretion (galactorrhea) or irregular menses or infertility, and in men with impaired sexual function and milk secretion. If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion. While a plain X-ray of the bones surrounding the pituitary may reveal the presence of a large macro-adenoma, the small micro-adenoma will not be apparent. Magnetic resonance imaging (MRI) is the most sensitive test for detecting pituitary tumours and determining their size. MRI scans may be repeated periodically to assess tumour progression and the effects of therapy. Computed Tomography (CT scan) also gives an image of the pituitary, but it is less sensitive than the MRI.
In addition to assessing the size of the pituitary tumour, doctors also look for damage to surrounding tissues, and perform tests to assess whether production of other pituitary hormones is normal. Depending on the size of the tumour, the doctor may request an eye exam with measurement of visual fields.
The hormone prolactin is downregulated by dopamine and is upregulated by oestrogen. A falsely-high measurement may occur due to the presence of the biologically-inactive macroprolactin in the serum. This can show up as high prolactin in some types of tests, but is asymptomatic.
Neonatal milk or witch's milk is milk secreted from the breasts of approximately 5% of newborn infants. It is considered a normal variation and no treatment or testing is necessary. In folklore, witch's milk was believed to be a source of nourishment for witches' familiar spirits.
Treatment is usually medication with dopamine agonists such as cabergoline, bromocriptine (often preferred when pregnancy is possible), and less frequently lisuride. A new drug in use is norprolac with the active ingredient quinagolide. Terguride is also used.
"Vitex agnus-castus" extract can be tried in cases of mild hyperprolactinaemia.
Galactorrhea is generally considered a symptom which may indicate a more serious problem. Collection of a thorough medical history, including pregnancies, surgeries, and consumption of drugs and medications is a first step in diagnosing the cause of galactorrhea. A physical examination, along with a breast examination, will usually be conducted. Blood and urine samples may be taken to determine levels of various hormones in the body, including prolactin and compounds related to thyroid function. A mammogram (an X-ray of the breast) or an ultrasound scan (using high frequency sound waves) might be used to determine if there are any tumors or cysts present in the breasts themselves. If a tumor of the pituitary gland is suspected, a magnetic resonance imaging (MRI) scan can locate tumors or abnormalities in tissues.
Galactorrhea can take place as a result of dysregulation of certain hormones. Hormonal causes most frequently associated with galactorrhea are hyperprolactinemia and thyroid conditions with elevated levels of thyroid-stimulating hormone (TSH) or thyrotropin-releasing hormone (TRH). No obvious cause is found in about 50% of cases.
Lactation requires the presence of prolactin, and the evaluation of galactorrhea includes eliciting a history for various medications or foods (methyldopa, opioids, antipsychotics, serotonin reuptake inhibitors, as well as licorice) and for behavioral causes (stress, and breast and chest wall stimulation), as well as evaluation for pregnancy, pituitary adenomas (with overproduction of prolactin or compression of the pituitary stalk), and hypothyroidism. Adenomas of the anterior pituitary are most often prolactinomas. Overproduction of prolactin leads to cessation of menstrual periods and infertility, which may be a diagnostic clue. Galactorrhea may also be caused by hormonal imbalances owing to birth control pills.
Galactorrhea is also a side effect associated with the use of the second-generation H receptor antagonist cimetidine (Tagamet). Galactorrhea can also be caused by antipsychotics that cause hyperprolactinemia by blocking dopamine receptors responsible for control of prolactin release. Of these, risperidone is the most notorious for causing this complication. Case reports suggest proton-pump inhibitors have been shown to cause galactorrhea.
Physicians who are comfortable with the initial evaluation of a patient (without evidence of tumor mass effect) can easily initiate therapy and provide follow-up. However, given the time constraints of modern ambulatory medicine, consultation with an endocrinologist is often necessary.
A doctor will test for prolactin blood levels in women with unexplained milk secretion (galactorrhea) or irregular menses or infertility, and in men with impaired sexual function and, in rare cases, milk secretion. If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion. The doctor will also request a magnetic resonance imaging (MRI), which is the most sensitive test for detecting pituitary tumors and determining their size. MRI scans may be repeated periodically to assess tumor progression and the effects of therapy. Computed Tomography (CT scan) also gives an image of the pituitary, but it is less sensitive than the MRI.
In addition to assessing the size of the pituitary tumor, doctors also look for damage to surrounding tissues, and perform tests to assess whether production of other pituitary hormones is normal. Depending on the size of the tumor, the doctor may request an eye exam with measurement of visual fields.
Hyperprolactinemia can cause reduced estrogen production in women and reduced testosterone production in men. Although estrogen/testosterone production may be restored after treatment for hyperprolactinemia, even a year or two without estrogen/testosterone can compromise bone strength, and patients should protect themselves from osteoporosis by increasing exercise and calcium intake through diet or supplementation, and by avoiding smoking. Patients may want to have bone density measurements to assess the effect of estrogen/testosterone deficiency on bone density. They may also want to discuss testosterone/estrogen replacement therapy with their physician.
Hyperprolactinemic SAHA syndrome is a cutaneous condition characterized by lateral hairiness, oligomenorrhea, and sometimes acne, seborrhea, FAGA I, and even galactorrhea.
There are a few scans and tests that the physician can conduct in order to diagnose a person with craniopharyngioma. Your doctor may order a high-resolution magnetic resonance imaging (MRI) scan. This test is valuable because it allows the neuroradiologist to view the tumor from different angles.
In some cases, a powerful 3T (Tesla) MRI scanner can help define the location of critical brain structures affected by the tumor.The histologic pattern consists of nesting of squamous epithelium bordered by radially arranged cells. It is frequently accompanied by calcium deposition and may have a microscopic papillary architecture.A computed tomography (CT) scan is also a good diagnostic tool as it detects calcification in the tumor.
Two distinct types are recognized:
- Adamantinomatous craniopharyngiomas, which resemble ameloblastomas (the most common type of odontogenic tumor), are characterized by activating CTNNB1 mutations; and,
- Papillary craniopharyngiomas are characterized by BRAFv600E mutations.
In the adamantinomatous type, calcifications are visible on neuroimaging and are helpful in diagnosis.
The papillary type rarely calcifies. A vast majority of craniopharyngiomas in children are adamantiomatous whereas both subtypes are common in adults. Mixed type tumors also occur.
On macroscopic examination, craniopharyngiomas are cystic or partially cystic with solid areas. On light microscopy, the cysts are seen to be lined by stratified squamous epithelium. Keratin pearls may also be seen. The cysts are usually filled with a yellow, viscous fluid which is rich in cholesterol crystals. Of a long list of possible symptoms, the most common presentations include: headaches, growth failure, and bitemporal hemianopsia.
Visual fields associated with chiasmal syndrome usually leads to an MRI. Contrast can delineate arterial aneurysms and will enhance most intrinsic chiasmal lesions. If a mass is confirmed on MRI, an endocrine panel can help determine if a pituitary adenoma is involved.
In patients with functional adenomas diagnosed by other means, visual field tests are a good screen to test for chiasmal involvement. Visual fields tests will delinate chiasmal syndromes because the missing fields will not cross the midline. Junctional scotomas classically show ipsilateral optic disc neuropathy with contralateral superotemporal defects. Bitemporal hemianopia with or without central scotoma is present if the lesions have affected the body of the chiasm. A posterior chiasm lesion should only produce defects on the temporal sides of the central visual field.
Craniopharyngiomas are usually successfully managed with a combination of adjuvant chemotherapy and neurosurgery. Recent research describes the rare occurrence of malignant transformations of these normally benign tumors. Malignant craniopharyngiomas can occur at any age, are slightly more common in females, and are usually of the adamantinomatous type.
The malignant transformations can take years to occur (although 1 in 5 of the diagnosed cases were de novo transformations), hence the need for lengthier follow up in patients diagnosed with the more common benign forms.
There was no link found between malignancy and initial chemo-radiotherapy treatment, and the overall survival rate was very poor with median survival being 6 months post diagnosis of malignancy.
Diagnosis of sarcoidosis is a matter of exclusion, as there is no specific test for the condition. To exclude sarcoidosis in a case presenting with pulmonary symptoms might involve a chest radiograph, CT scan of chest, PET scan, CT-guided biopsy, mediastinoscopy, open lung biopsy, bronchoscopy with biopsy, endobronchial ultrasound, and endoscopic ultrasound with fine-needle aspiration of mediastinal lymph nodes (EBUS FNA). Tissue from biopsy of lymph nodes is subjected to both flow cytometry to rule out cancer and special stains (acid fast bacilli stain and Gömöri methenamine silver stain) to rule out microorganisms and fungi.
Serum markers of sarcoidosis, include: serum amyloid A, soluble interleukin-2 receptor, lysozyme, angiotensin converting enzyme, and the glycoprotein KL-6. Angiotensin-converting enzyme blood levels are used in the monitoring of sarcoidosis. A bronchoalveolar lavage can show an elevated (of at least 3.5) CD4/CD8 T cell ratio, which is indicative (but not proof) of pulmonary sarcoidosis. In at least one study the induced sputum ratio of CD4/CD8 and level of TNF was correlated to those in the lavage fluid. A sarcoidosis-like lung disease called granulomatous–lymphocytic interstitial lung disease can be seen in patients with common variable immunodeficiency (CVID) and therefore serum antibody levels should be measured to exclude CVID.
Differential diagnosis includes metastatic disease, lymphoma, septic emboli, rheumatoid nodules, granulomatosis with polyangiitis, varicella infection, tuberculosis, and atypical infections, such as "Mycobacterium avium" complex, cytomegalovirus, and cryptococcus. Sarcoidosis is confused most commonly with neoplastic diseases, such as lymphoma, or with disorders characterized also by a mononuclear cell granulomatous inflammatory process, such as the mycobacterial and fungal disorders.
Chest radiograph changes are divided into four stages:
1. bihilar lymphadenopathy
2. bihilar lymphadenopathy and reticulonodular infiltrates
3. bilateral pulmonary infiltrates
4. fibrocystic sarcoidosis typically with upward hilar retraction, cystic and bullous changes
Although people with stage 1 radiographs tend to have the acute or subacute, reversible form of the disease, those with stages 2 and 3 often have the chronic, progressive disease; these patterns do not represent consecutive "stages" of sarcoidosis. Thus, except for epidemiologic purposes, this categorization is mostly of historic interest.
In sarcoidosis presenting in the Caucasian population, hilar adenopathy and erythema nodosum are the most common initial symptoms. In this population, a biopsy of the gastrocnemius muscle is a useful tool in correctly diagnosing the person. The presence of a noncaseating epithelioid granuloma in a gastrocnemius specimen is definitive evidence of sarcoidosis, as other tuberculoid and fungal diseases extremely rarely present histologically in this muscle.
Sarcoidosis may be divided into the following types:
- Annular sarcoidosis
- Erythrodermic sarcoidosis
- Ichthyosiform sarcoidosis
- Hypopigmented sarcoidosis
- Löfgren syndrome
- Lupus pernio
- Morpheaform sarcoidosis
- Mucosal sarcoidosis
- Neurosarcoidosis
- Papular sarcoid
- Scar sarcoid
- Subcutaneous sarcoidosis
- Systemic sarcoidosis
- Ulcerative sarcoidosis
Multiple endocrine neoplasia or MEN is part of a group of disorders that affect the body's network of hormone-producing glands (the endocrine system). Hormones are chemical messengers that travel through the bloodstream and regulate the function of cells and tissues throughout the body. Multiple endocrine neoplasia involves tumors in at least two endocrine glands; tumors can also develop in other organs and tissues. These growths can be noncancerous (benign) or cancerous (malignant). If the tumors become cancerous, some cases can be life-threatening.
The two major forms of multiple endocrine neoplasia are called type 1 and type 2. These two types are often confused because of their similar names. However, type 1 and type 2 are distinguished by the genes involved, the types of hormones made, and the characteristic signs and symptoms.
These disorders greatly increase the risk of developing multiple cancerous and noncancerous tumors in glands such as the parathyroid, pituitary, and pancreas. Multiple endocrine neoplasia occurs when tumors are found in at least two of the three main endocrine glands (parathyroid, pituitary, and pancreatico-duodenum). Tumors can also develop in organs and tissues other than endocrine glands. If the tumors become cancerous, some cases can be life-threatening. The disorder affects 1 in 30,000 people.
Although many different types of hormone-producing tumors are associated with multiple endocrine neoplasia, tumors of the parathyroid gland, pituitary gland, and pancreas are most frequent in multiple endocrine neoplasia type 1. MEN1-associated overactivity of these three endocrine organs are briefly described here:
- Overactivity of the parathyroid gland (hyperparathyroidism) is the most common sign of this disorder. Hyperparathyroidism disrupts the normal balance of calcium in the blood, which can lead to kidney stones, thinning of the bones (osteoporosis), high blood pressure (hypertension), loss of appetite, nausea, weakness, fatigue, and depression.
- Neoplasia in the pituitary gland can manifest as prolactinomas whereby too much prolactin is secreted, suppressing the release of gonadotropins, causing a decrease in sex hormones such as testosterone. Pituitary tumor in MEN1 can be large and cause signs by compressing adjacent tissues.
- Pancreatic tumors associated with MEN-1 usually form in the beta cells of the islets of Langerhans, causing over-secretion of insulin, resulting in low blood glucose levels (hypoglycemia). However, many other tumors of the pancreatic Islets of Langerhans can occur in MEN-1. One of these, involving the alpha cells, causes over-secretion of glucagon, resulting in a classic triad of high blood glucose levels (hyperglycemia), a rash called necrolytic migratory erythema, and weight loss. Another is a tumor of the non-beta islet cells, known as a gastrinoma, which causes the over-secretion of the hormone gastrin, resulting in the over-production of acid by the acid-producing cells of the stomach (parietal cells) and a constellation of sequelae known as Zollinger-Ellison syndrome. Zollinger-Ellison syndrome may include severe gastric ulcers, abdominal pain, loss of appetite, chronic diarrhea, malnutrition, and subsequent weight loss. Other non-beta islet cell tumors associated with MEN1 are discussed below.
In a diagnostic workup individuals with a combination of endocrine neoplasias suggestive of the "MEN1 syndrome" are recommended to have a mutational analysis of the MEN1 gene if additional diagnostic criteria are sufficiently met, mainly including:
- age <40 years
- positive family history
- multifocal or recurrent neoplasia
- two or more organ systems affected
Chiasmal syndrome is the set of signs and symptoms that are associated with lesions of the optic chiasm, manifesting as various impairments of the sufferer's visual field according to the location of the lesion along the optic nerve. Pituitary adenomas are the most common cause; however, chiasmal syndrome may be caused by cancer, or associated with other medical conditions such as multiple sclerosis and neurofibromatosis.