Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If one of these tests shows a deficiency of hormones produced by the pituitary, magnetic resonance imaging (MRI) scan of the pituitary is the first step in identifying an underlying cause. MRI may show various tumors and may assist in delineating other causes. Tumors smaller than 1 cm are referred to as "microadenomas", and larger lesions are called "macroadenomas". Computed tomography with radiocontrast may be used if MRI is not available. Formal visual field testing by perimetry is recommended, as this would show evidence of optic nerve compression by a tumor.
Other tests that may assist in the diagnosis of hypopituitarism, especially if no tumor is found on the MRI scan, are ferritin (elevated in hemochromatosis), angiotensin converting enzyme (ACE) levels (often elevated in sarcoidosis), and human chorionic gonadotropin (often elevated in tumor of germ cell origin). If a genetic cause is suspected, genetic testing may be performed.
Growth hormone deficiency is almost certain if all other pituitary tests are also abnormal, and insulin-like growth factor 1 (IGF-1) levels are decreased. If this is not the case, IGF-1 levels are poorly predictive of the presence of GH deficiency; stimulation testing with the insulin tolerance test is then required. This is performed by administering insulin to lower the blood sugar to a level below 2.2 mmol/l. Once this occurs, growth hormone levels are measured. If they are low despite the stimulatory effect of the low blood sugars, growth hormone deficiency is confirmed. The test is not without risks, especially in those prone to seizures or are known to have heart disease, and causes the unpleasant symptoms of hypoglycemia. Alternative tests (such as the growth hormone releasing hormone stimulation test) are less useful, although a stimulation test with arginine may be used for diagnosis, especially in situations where an insulin tolerance test is thought to be too dangerous. If GH deficiency is suspected, and all other pituitary hormones are normal, two different stimulation tests are needed for confirmation.
If morning cortisol levels are over 500 nmol/l, ACTH deficiency is unlikely, whereas a level less than 100 is indicative. Levels between 100-500 require a stimulation test. This, too, is done with the insulin tolerance test. A cortisol level above 500 after achieving a low blood sugar rules out ACTH deficiency, while lower levels confirm the diagnosis. A similar stimulation test using corticotropin-releasing hormone (CRH) is not sensitive enough for the purposes of the investigation. If the insulin tolerance test yields an abnormal result, a further test measuring the response of the adrenal glands to synthetic ACTH (the ACTH stimulation test) can be performed to confirm the diagnosis. Stimulation testing with metyrapone is an alternative. Some suggest that an ACTH stimulation test is sufficient as first-line investigation, and that an insulin tolerance test is only needed if the ACTH test is equivocal. The insulin tolerance test is discouraged in children. None of the tests for ACTH deficiency are perfect, and further tests after a period of time may be needed if initial results are not conclusive.
Symptoms of diabetes insipidus should prompt a formal fluid deprivation test to assess the body's response to dehydration, which normally causes concentration of the urine and increasing osmolarity of the blood. If these parameters are unchanged, desmopressin (an ADH analogue) is administered. If the urine then becomes concentrated and the blood osmolarity falls, there is a lack of ADH due to lack of pituitary function ("cranial diabetes insipidus"). In contrast, there is no change if the kidneys are unresponsive to ADH due to a different problem ("nephrogenic diabetes insipidus").
Pituitary incidentalomas are pituitary tumors that are characterized as an incidental finding. They are often discovered by computed tomography (CT) or magnetic resonance imaging (MRI), performed in the evaluation of unrelated medical conditions such as suspected head trauma, in cancer staging or in the evaluation of nonspecific symptoms such as dizziness and headache. It is not uncommon for them to be discovered at autopsy. In a meta-analysis, adenomas were found in an average of 16.7% in postmortem studies, with most being microadenomas (<10mm); macrodenomas accounted for only 0.16% to 0.2% of the decedents. While non-secreting, noninvasive pituitary microadenomas are generally considered to be literally as well as clinically benign, there are to date scant studies of low quality to support this assertion.
It has been recommended in the current Clinical Practice Guidelines (2011) by the Endocrine Society - a professional, international medical organization in the field of endocrinology and metabolism - that all patients with pituitary incidentalomas undergo a complete medical history and physical examination, laboratory evaluations to screen for hormone hypersecretion and for hypopituitarism. If the lesion is in close proximity to the optic nerves or optic chiasm, a visual field examination should be performed. For those with incidentalomas which do not require surgical removal, follow up clinical assessments and neuroimaging should be performed as well follow-up visual field examinations for incidentalomas that abut or compress the optic nerve and chiasm and follow-up endocrine testing for macroincidentalomas.
A doctor will test for prolactin blood levels in women with unexplained milk secretion (galactorrhea) or irregular menses or infertility, and in men with impaired sexual function and, in rare cases, milk secretion. If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion. The doctor will also request a magnetic resonance imaging (MRI), which is the most sensitive test for detecting pituitary tumors and determining their size. MRI scans may be repeated periodically to assess tumor progression and the effects of therapy. Computed Tomography (CT scan) also gives an image of the pituitary, but it is less sensitive than the MRI.
In addition to assessing the size of the pituitary tumor, doctors also look for damage to surrounding tissues, and perform tests to assess whether production of other pituitary hormones is normal. Depending on the size of the tumor, the doctor may request an eye exam with measurement of visual fields.
For the diagnosis of hyperpituitarism it depends on the cell type(s) affected, clinical manifestations of hormone excess may include, gigantism or acromegaly, which can be identified by clinical and radiographic results. Cushing's disease diagnosis is done with a physical examination, laboratory tests and X rays of the pituitary glands (to locate tumors) For prolactinoma, diagnosis comes in the form of the measurement of serum prolactin levels and x-ray of pituitary gland.
If acromegaly is suspected, medical imaging and medical laboratory investigations are generally used together to confirm or rule out the presence of this condition.
IGF1 provides the most sensitive lab test for the diagnosis of acromegaly, and a GH suppression test following an oral glucose load, which is a very specific lab test, will confirm the diagnosis following a positive screening test for IGF1. A single value of the GH is not useful in view of its pulsatality (levels in the blood vary greatly even in healthy individuals). GH levels taken 2 hours after a 75- or 100-gram glucose tolerance test are helpful in the diagnosis: GH levels are suppressed below 1 μg/l in normal people, and levels higher than this cutoff are confirmatory of acromegaly.
Other pituitary hormones must be assessed to address the secretory effects of the tumor, as well as the mass effect of the tumor on the normal pituitary gland. They include thyroid stimulating hormone (TSH), gonadotropic hormones (FSH, LH), adrenocorticotropic hormone, and prolactin.
An MRI of the brain focusing on the sella turcica after gadolinium administration allows for clear delineation of the pituitary and the hypothalamus and the location of the tumor. A number of other overgrowth syndromes can result in similar problems.
Unlike tumors of the posterior Pituitary, Pituitary adenomas are classified as endocrine tumors (not brain tumors). Pituitary adenomas are classified based upon anatomical, histological and functional criteria.
- Anatomically pituitary tumors are classified by their size based on radiological findings; either microadenomas (less than <10 mm) or macroadenomas (equal or greater than ≥10 mm).
- Histological classification utilizes an immunohistological characterization of the tumors in terms of their hormone production. Historically they were classed as either basophilic, acidophilic, or chromophobic on the basis of whether or not they took up the tinctorial stains hematoxylin and eosin. This classification has fallen into disuse, in favor of a classification based on what type of hormone is secreted by the tumor. Approximately 20-25% of adenomas do not secrete any readily identifiable active hormones ('non-functioning tumors') yet they are still sometimes referred to as 'chromophobic'.
- Functional classification is based upon the tumors endocrine activity as determined by serum hormone levels and pituitary tissue cellular hormone secretion detected via immunohistochemical staining. The "Percentage of hormone production cases" values are the fractions of adenomas producing each related hormone of each tumor type as compared to all cases of pituitary tumors, and does not directly correlate to the percentages of each tumor type because of smaller or greater incidences of absence of secretion of the expected hormone. Thus, nonsecretive adenomas may be either "null cell adenomas" or a more specific adenoma that, however, remains nonsecretive.
Evaluation of growth hormone hyper-secretion cannot be excluded with a single normal GH level due to diurnal variation. However, a random blood sample showing markedly elevated GH is adequate for diagnosis of GH hyper-secretion. Additionally, a high-normal GH level that fails to suppress with administration of glucose is also sufficient for a diagnosis of GH hyper-secretion.
Insulin-like Growth Factor-1 (IGF-1) is an excellent test for evaluation of GH hyper-secretion. It does not undergo diurnal variation and will thus be consistently elevated in GH hyper-secretion and therefore patients with gigantism. A single normal IGF-1 value will reliably exclude GH hyper-secretion.
Treatment (for hyperpituitarism) in the case of prolactinoma consists of long-term medical management. Dopamine agonists are strong suppressors of PRL secretion and establish normal gonadal function. It also inhibits tumor cell replication (in some cases causes tumor shrinkage) Treatment for gigantism begins with establishing target goals for IGF-1, transsphenoidal surgery (somatostatin receptor ligands- preoperatively) and postoperative imaging assessment. For Cushing's disease there is surgery to extract the tumor; after surgery, the gland may slowly start to work again, though not always.
Hyperparathyroidism is confirmed by blood tests such as calcium and PTH levels. A specific test for parathyroid adenoma is sestamibi parathyroid scintigraphy, the sestamibi scan. This nuclear imaging technique reveals the presence and location of pathological parathyroid tissue.
If a woman has one or more small prolactinoma, there is no reason that she cannot conceive and have a normal pregnancy after successful medical therapy. The pituitary enlarges and prolactin production increases during normal pregnancy in women without pituitary disorders. Women with prolactin-secreting tumors may experience further pituitary enlargement and must be closely monitored during pregnancy. However, damage to the pituitary or eye nerves occurs in less than one percent of pregnant women with prolactinoma. In women with large tumors, the risk of damage to the pituitary or eye nerves is greater, and some doctors consider it as high as 25%. If a woman has completed a successful pregnancy, the chances of her completing further successful pregnancies are extremely high.
A woman with a prolactinoma should discuss her plans to conceive with her physician, so she can be carefully evaluated prior to becoming pregnant. This evaluation will include a magnetic resonance imaging (MRI) scan to assess the size of the tumor and an eye examination with measurement of visual fields. As soon as a patient is pregnant, her doctor will usually advise that she stop taking bromocriptine or cabergoline, the common treatments for prolactinoma. Most endocrinologists see patients every two months throughout the pregnancy. The patient should consult her endocrinologist promptly if she develops symptoms — in particular, headaches, visual changes, nausea, vomiting, excessive thirst or urination, or extreme lethargy. Bromocriptine or cabergoline treatment may be renewed and additional treatment may be required if the patient develops symptoms from growth of the tumor during pregnancy.
At one time, oral contraceptives were thought to contribute to the development of prolactinomas. However, this is no longer thought to be true. Patients with prolactinoma treated with bromocriptine or cabergoline may also take oral contraceptives. Likewise, post-menopausal estrogen replacement is safe in patients with prolactinoma treated with medical therapy or surgery.
Some people only use Conn's syndrome for when it occurs due to an adrenal adenoma (a type of benign tumor). In practice, however, the terms are often used interchangeably, regardless of the underlying physiology.
Pseudoacromegaly is a condition with the usual acromegaloid features, but without an increase in growth hormone and IGF-1. It is frequently associated with insulin resistance. Cases have been reported due to minoxidil at an unusually high dose. It can also be caused by a selective postreceptor defect of insulin signalling, leading to the impairment of metabolic, but preservation of mitogenic, signalling.
Primary hyperaldosteronism can be mimicked by Liddle syndrome, and by ingestion of licorice and other foods containing glycyrrhizin. In one case report, hypertension and quadriparesis resulted from intoxication with a non-alcoholic pastis (an anise-flavored aperitif containing glycyrrhizinic acid).
Hormonal syndromes should be confirmed with laboratory testing. Laboratory findings in Cushing syndrome include increased serum glucose (blood sugar) and increased urine cortisol. Adrenal virilism is confirmed by the finding of an excess of serum androstenedione and dehydroepiandrosterone. Findings in Conn syndrome include low serum potassium, low plasma renin activity, and high serum aldosterone. Feminization is confirmed with the finding of excess serum estrogen.
A doctor will test for prolactin blood levels in women with unexplained milk secretion (galactorrhea) or irregular menses or infertility, and in men with impaired sexual function and milk secretion. If prolactin is high, a doctor will test thyroid function and ask first about other conditions and medications known to raise prolactin secretion. While a plain X-ray of the bones surrounding the pituitary may reveal the presence of a large macro-adenoma, the small micro-adenoma will not be apparent. Magnetic resonance imaging (MRI) is the most sensitive test for detecting pituitary tumours and determining their size. MRI scans may be repeated periodically to assess tumour progression and the effects of therapy. Computed Tomography (CT scan) also gives an image of the pituitary, but it is less sensitive than the MRI.
In addition to assessing the size of the pituitary tumour, doctors also look for damage to surrounding tissues, and perform tests to assess whether production of other pituitary hormones is normal. Depending on the size of the tumour, the doctor may request an eye exam with measurement of visual fields.
The hormone prolactin is downregulated by dopamine and is upregulated by oestrogen. A falsely-high measurement may occur due to the presence of the biologically-inactive macroprolactin in the serum. This can show up as high prolactin in some types of tests, but is asymptomatic.
Hepatic adenomas are related to glycogen storage diseases, type 1, as well as anabolic steroid use.
Although GH can be readily measured in a blood sample, testing for GH deficiency is constrained by the fact that levels are nearly undetectable for most of the day. This makes simple measurement of GH in a single blood sample useless for detecting deficiency. Physicians therefore use a combination of indirect and direct criteria in assessing GHD, including:
- Auxologic criteria (defined by body measurements)
- Indirect hormonal criteria (IGF levels from a single blood sample)
- Direct hormonal criteria (measurement of GH in multiple blood samples to determine secretory patterns or responses to provocative testing), in particular:
- Subnormal frequency and amplitude of GH secretory peaks when sampled over several hours
- Subnormal GH secretion in response to at least two provocative stimuli
- Increased IGF1 levels after a few days of GH treatment
- Response to GH treatment
- Corroborative evidence of pituitary dysfunction
"Provocative tests" involve giving a dose of an agent that will normally provoke a pituitary to release a burst of growth hormone. An intravenous line is established, the agent is given, and small amounts of blood are drawn at 15 minute intervals over the next hour to determine if a rise of GH was provoked. Agents which have been used clinically to stimulate and assess GH secretion are arginine, levodopa, clonidine, epinephrine and propranolol, glucagon and insulin. An insulin tolerance test has been shown to be reproducible, age-independent, and able to distinguish between GHD and normal adults, and so is the test of choice.
Severe GH deficiency in childhood additionally has the following measurable characteristics:
- Proportional stature well below that expected for family heights, although this characteristic may not be present in the case of familial-linked GH deficiency
- Below-normal velocity of growth
- Delayed physical maturation
- Delayed bone age
- Low levels of IGF1, IGF2, IGF binding protein 3
- Increased growth velocity after a few months of GH treatment
In childhood and adulthood, the diagnosing doctor will look for these features accompanied by corroboratory evidence of hypopituitarism such as deficiency of other pituitary hormones, a structurally abnormal pituitary, or a history of damage to the pituitary. This would confirm the diagnosis; in the absence of pituitary pathology, further testing would be required.
The characteristic blood test results for this disorder can also be found in other disorders (for example TSH-oma (pituitary adenoma), or other pituitary disorders). The diagnosis may involve identifying a mutation of the thyroid receptor, which is present in approximately 85% of cases.
Yet, since discovery of resistance to thyroid hormones in the absence of thyroid hormone receptor beta mutations, lack of a mutation in a patient does not rule out resistance.
Radiological studies of the abdomen, such as CT scans and magnetic resonance imaging are useful for identifying the site of the tumor, differentiating it from other diseases, such as adrenocortical adenoma, and determining the extent of invasion of the tumor into surrounding organs and tissues. CT scans of the chest and bone scans are routinely performed to look for metastases to the lungs and bones respectively. These studies are critical in determining whether or not the tumor can be surgically removed, the only potential cure at this time.
Thyroid hormone resistance syndrome is rare, incidence is variously quoted as 1 in 50,000 or 1 in 40,000 live births. More than 1000 individuals have been identified with thyroid hormone resistance, of which 85% had thyroid hormone beta receptor mutation.
Surgery is the only cure for parathyroid adenomas. It is successful about 95% of the time. Parathyroidectomy is the removal of the affected gland(s). The standard of treatment of primary hyperparathyroidism was formerly a surgical technique called bilateral neck exploration, in which the neck was opened on both sides, the parathyroids were identified, and the affected tissue was removed. By the 1980s, unilateral exploration became more common. Parathyroidectomy can now be performed in a minimally invasive fashion, mainly because imaging techniques can pinpoint the location of the tissue. Minimally invasive techniques include smaller open procedures, radio-guided and video-assisted procedures, and totally endoscopic surgery.
Before surgery is attempted, the affected glandular tissue must be located. Though the parathyroid glands are usually located on the back of the thyroid, their position is variable. Some people have one or more parathyroid glands elsewhere in the neck anatomy or in the chest. About 10% of parathyroid adenomas are ectopic, located not along the back of the thyroid but elsewhere in the body, sometimes in the mediastinum of the chest. This can make them difficult to locate, so various imaging techniques are used, such as the sestamibi scan, single-photon emission computed tomography (SPECT), ultrasound, MRI, and CT scans. sometimes parathyroid adenomas can be ablated by ethanol injection, guided by ultrasound.
Most patients with thyroid adenoma can be managed by watchful waiting (without surgical excision) with regular monitoring. However, some patients still choose surgery after being fully informed of the risks. Regular monitoring mainly consists of watching for changes in nodule size and symptoms, and repeat ultrasonography or needle aspiration biopsy if the nodule grows.
Most Cushing's syndrome cases are caused by corticosteroid medications, such as those used for asthma, arthritis, eczema and other inflammatory conditions. Consequently, most patients are effectively treated by carefully tapering off (and eventually stopping) the medication that causes the symptoms.
If an adrenal adenoma is identified, it may be removed by surgery. An ACTH-secreting corticotrophic pituitary adenoma should be removed after diagnosis. Regardless of the adenoma's location, most patients require steroid replacement postoperatively at least in the interim, as long-term suppression of pituitary ACTH and normal adrenal tissue does not recover immediately. Clearly, if both adrenals are removed, replacement with hydrocortisone or prednisolone is imperative.
In those patients not suited for or unwilling to undergo surgery, several drugs have been found to inhibit cortisol synthesis (e.g. ketoconazole, metyrapone) but they are of limited efficacy. Mifepristone is a powerful glucocorticoid type II receptor antagonist and, since it does not interfere with normal cortisol homeostatis type I receptor transmission, may be especially useful for treating the cognitive effects of Cushing's syndrome. However, the medication faces considerable controversy due to its use as an abortifacient. In February 2012, the FDA approved mifepristone to control high blood sugar levels (hyperglycemia) in adult patients who are not candidates for surgery, or who did not respond to prior surgery, with the warning that mifepristone should never be used by pregnant women.
Removal of the adrenals in the absence of a known tumor is occasionally performed to eliminate the production of excess cortisol. In some occasions, this removes negative feedback from a previously occult pituitary adenoma, which starts growing rapidly and produces extreme levels of ACTH, leading to hyperpigmentation. This clinical situation is known as Nelson's syndrome.
The standard test for growth hormone deficiency is the growth hormone stimulation test. Peak levels of growth hormone below normal are considered confirmation of a growth hormone deficiency. Growth-impaired children with a normal stimulation test were considered suspect for having the Kowarski syndrome that may benefit from treatment with growth hormone.
Zadik et al. reported in 1990 that the growth hormone stimulation test is not reliable, suggesting the use of the more reliable 24-hour integrated concentration of growth hormone (IC-GH) as a better test. In 1995, they also suggested that some cases of the neurosecretory growth failure syndrome might have the Kowarski syndrome.
Albertsson-Wikland Kerstin confirmed in 1992 that the IC-GH test is a reproducible test for growth hormone deficiency and Carel et al. confirmed in 1997 that the reliability of the growth hormone stimulation tests was poor.
A 1987 study by Bistrizer et al suggested a diagnostic procedure that may be used to diagnose the Kowarski syndrome. Their study was based on the requirement for the growth hormone molecule to bind a specific binding molecule on the wall of the responsive cells to elicit its activity. Their study demonstrated a decrease ability of the growth hormone from children with the Kowarski syndrome to bind with living IM-9 cells. The test involved measuring the ratio between the levels of growth hormone by a radioreceptor assay (RRA-GH) to the level of growth hormone determined by the established radioimmunoassay (RIA-GH). The study found that the RRA-GH/RIA-GH ratio in NS subjects was normal but significantly below normal (P<0.005) in the Kowarski syndrome patients. The authors proposed the use of their test for the diagnosis of the Kowarski syndrome.
Bistrizer, Chalew and Kowarski demonstrated in 1995 that a modified RRA-GH/RIA-GH ratio test was a predictor for the responsiveness of growth-impaired children to growth hormone therapy.
The RRA-GH/RIA-GH ratio assay proposed by Bistrizer et al. can be used for screening of patients who may have the Kowarski syndrome thus more likely to respond to Growth Hormone therapy. Advances in the methodology for identifying spot mutations in the DNA of individuals demonstrated that the "Kowarski Syndrome is caused by various mutations in the GH1 gene (17q22-q24) that result in structural GH anomalies and a biologically inactive molecule." Testing individual patient for such mutation is offered on the Internet.