Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
The types of imaging techniques that are most prominently utilized when studying and/or diagnosing CBD are:
- magnetic resonance imaging (MRI)
- single-photon emission computed tomography (SPECT)
- fluorodopa positron emission tomography (FDOPA PET)
Developments or improvements in imaging techniques provide the future possibility for definitive clinical diagnosis prior to death. However, despite their benefits, information learned from MRI and SPECT during the beginning of CBD progression tend to show no irregularities that would indicate the presence of such a neurodegenerative disease. FDOPA PET is used to study the efficacy of the dopamine pathway.
Despite the undoubted presence of cortical atrophy (as determined through MRI and SPECT) in individuals experiencing the symptoms of CBD, this is not an exclusive indicator for the disease. Thus, the utilization of this factor in the diagnosis of CBD should be used only in combination with other clinically present dysfunctions.
One of the most significant problems associated with CBD is the inability to perform a definitive diagnosis while an individual exhibiting the symptoms associated with CBD is still alive. A clinical diagnosis of CBD is performed based upon the specified diagnostic criteria, which focus mainly on the symptoms correlated with the disease. However, this often results in complications as these symptoms often overlap with numerous other neurodegenerative diseases. Frequently, a differential diagnosis for CBD is performed, in which other diseases are eliminated based on specific symptoms that do not overlap. However, some of the symptoms of CBD used in this process are rare to the disease, and thus the differential diagnosis cannot always be used.
Postmortem diagnosis provides the only true indication of the presence of CBD. Most of these diagnoses utilize the Gallyas-Braak staining method, which is effective in identifying the presence of astroglial inclusions and coincidental tauopathy.
The confirmatory diagnosis is made via brain biopsy, however, other tests can be used to help such as MRI, EEG, CT, as well as the physical exam and history
Diagnosis of MSA can be challenging because there is no test that can definitively make or confirm the diagnosis in a living patient. Clinical diagnostic criteria were defined in 1998 and updated in 2007. Certain signs and symptoms of MSA also occur with other disorders, such as Parkinson's disease, making the diagnosis more difficult.
Both MRI and CT scanning frequently show a decrease in the size of the cerebellum and pons in those with cerebellar features. The putamen is hypodense on T2-weighted MRI and may show an increased deposition of iron in Parkinsonian form. In cerebellar form, a "hot cross" sign has been emphasized; it reflects atrophy of the pontocereballar fibers that manifest in T2 signal intensity in atrophic pons.
A definitive diagnosis can only be made pathologically on finding abundant glial cytoplasmic inclusions in the central nervous system.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
Standard MRI scans have been performed on 1.5 Tesla scanners with 5 mm thickness and 5 mm spacing to screen for white matter lesions in identified families. If signal intensities of the MRI scans are higher in white matter regions than in grey matter regions, the patient is considered to be at risk for HDLS, although a number of other disorders can also produce white matter changes and the findings are not diagnostic without genetic testing or pathologic confirmation.
MRI is often done to diagnose PSP. MRI may show atrophy in the midbrain with preservation of the pons giving a "hummingbird" sign appearance.
A CT scan or magnetic resonance imaging (MRI scan) is commonly performed, although these tests do not pick up diffuse metabolic changes associated with dementia in a person that shows no gross neurological problems (such as paralysis or weakness) on neurological exam. CT or MRI may suggest normal pressure hydrocephalus, a potentially reversible cause of dementia, and can yield information relevant to other types of dementia, such as infarction (stroke) that would point at a vascular type of dementia.
The functional neuroimaging modalities of SPECT and PET are more useful in assessing long-standing cognitive dysfunction, since they have shown similar ability to diagnose dementia as a clinical exam and cognitive testing. The ability of SPECT to differentiate the vascular cause (i.e., multi-infarct dementia) from Alzheimer's disease dementias, appears superior to differentiation by clinical exam.
Recent research has established the value of PET imaging using carbon-11 Pittsburgh Compound B as a radiotracer (PIB-PET) in predictive diagnosis of various kinds of dementia, in particular Alzheimer's disease. Studies from Australia have found PIB-PET 86% accurate in predicting which patients with mild cognitive impairment will develop Alzheimer's disease within two years. In another study, carried out using 66 patients seen at the University of Michigan, PET studies using either PIB or another radiotracer, carbon-11 dihydrotetrabenazine (DTBZ), led to more accurate diagnosis for more than one-fourth of patients with mild cognitive impairment or mild dementia.
The progression of the degeneration caused by bvFTD may follow a predictable course. The degeneration begins in the orbitofrontal cortex and medial aspects such as ventromedial cortex. In later stages, it gradually expands its area to the dorsolateral cortex and the temporal lobe. Thus, the detection of dysfunction of the orbitofrontal cortex and ventromedial cortex is important in the detection of early stage bvFTD. As stated above, a behavioural change may occur before the appearance of any atrophy in the brain in the course of the disease. Because of that, image scanning such as MRI can be insensitive to the early degeneration and it is difficult to detect early-stage bvFTD.
In neuropsychology, there is an increasing interest in using neuropsychological tests such as the Iowa gambling task or Faux Pas Recognition test as an alternative to imaging for the diagnosis of bvFTD. Both the Iowa gambling task and the Faux Pas test are known to be sensitive to dysfunction of the orbitofrontal cortex.
Faux Pas Recognition test is intended to measure one’s ability to detect faux pas types of social blunders (accidentally make a statement or an action that offends others). It is suggested that people with orbitofrontal cortex dysfunction show a tendency to make social blunders due to a deficit in self-monitoring. Self-monitoring is the ability of individuals to evaluate their behaviour to make sure that their behaviour is appropriate in particular situations. The impairment in self-monitoring leads to a lack of social emotion signals. The social emotions such as embarrassment are important in the way that they signal the individual to adapt social behaviour in an appropriate manner to maintain relationships with others. Though patients with damage to the OFC retain intact knowledge of social norms, they fail to apply it to actual behaviour because they fail to generate social emotions that promote adaptive social behaviour.
The other test, the Iowa gambling task, is a psychological test intended to simulate real-life decision making. The underlying concept of this test is the somatic marker hypothesis. This hypothesis argues that when people have to make complex uncertain decisions, they employ both cognitive and emotional processes to assess the values of the choices available to them. Each time a person makes a decision, both physiological signals and evoked emotion (somatic marker) are associated with their outcomes and it accumulates as experience. People tend to choose the choice which might produce the outcome reinforced with positive stimuli, thus it biases decision-making towards certain behaviours while avoiding others. It is thought that somatic marker is processed in orbitofrontal cortex.
The symptoms observed in bvFTD are caused by dysfunction of the orbitofrontal cortex, thus these two neuropsychological tests might be useful in detecting the early stage bvFTD. However, as self-monitoring and somatic marker processes are so complex, it likely involves other brain regions. Therefore, neuropsychological tests are sensitive to the dysfunction of orbitofrontal cortex, yet not specific to it. The weakness of these tests is that they do not necessarily show dysfunction of the orbitofrontal cortex.
In order to solve this problem, some researchers combined neuropsychological tests which detect the dysfunction of orbitofrontal cortex into one so that it increases its specificity to the degeneration of the frontal lobe in order to detect the early-stage bvFTD. They invented the Executive and Social Cognition Battery which comprises five neuropsychological tests.
- Iowa gambling task
- Faux Pas test
- Hotel task
- Mind in the Eyes
- Multiple Errands Task
The result has shown that this combined test is more sensitive in detecting the deficits in early bvFTD.
Structural MRI scans often reveal frontal lobe and/or anterior temporal lobe atrophy but in early cases the scan may seem normal. Atrophy can be either bilateral or asymmetric. Registration of images at different points of time (e.g., one year apart) can show evidence of atrophy that otherwise (at individual time points) may be reported as normal. Many research groups have begun using techniques such as magnetic resonance spectroscopy, functional imaging and cortical thickness measurements in an attempt to offer an earlier diagnosis to the FTD patient. Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) scans classically show frontal and/or anterior temporal hypometabolism, which helps differentiate the disease from Alzheimer's disease. The PET scan in Alzheimer's disease classically shows biparietal hypometabolism. Meta-analyses based on imaging methods have shown that frontotemporal dementia mainly affects a frontomedial network discussed in the context of social cognition or 'theory of mind'. This is entirely in keeping with the notion that on the basis of cognitive neuropsychological evidence, the ventromedial prefrontal cortex is a major locus of dysfunction early on in the course of the behavioural variant of frontotemporal degeneration. The language subtypes of frontotemporal lobar degeneration (semantic dementia and progressive nonfluent aphasia) can be regionally dissociated by imaging approaches "in vivo".
The confusion between Alzheimer's and FTD is justifiable due to the similarities between their initial symptoms. Patients do not have difficulty with movement and other motor tasks. As FTD symptoms appear, it is difficult to differentiate between a diagnosis of Alzheimer's disease and FTD. There are distinct differences in the behavioral and emotional symptoms of the two dementias, notably, the blunting of emotions seen in FTD patients. In the early stages of FTD, anxiety and depression are common, which may result in an ambiguous diagnosis. However, over time, these ambiguities fade away as this dementia progresses and defining symptoms of apathy, unique to FTD, start to appear.
Recent studies over several years have developed new criteria for the diagnosis of behavioral variant frontotemporal dementia (bvFTD). Six distinct clinical features have been identified as symptoms of bvFTD.
1. Disinhibition
2. Apathy/Inertia
3. Loss of Sympathy/Empathy
4. Perseverative/compulsive behaviors
5. Hyperorality
6. Dysexecutive neuropsychological profile
Of the six features, three must be present in a patient to diagnose one with possible bvFTD. Similar to standard FTD, the primary diagnosis stems from clinical trials that identify the associated symptoms, instead of imaging studies. The above criteria are used to distinguish bvFTD from disorders such as Alzheimer's and other causes of dementia. In addition, the new criteria allow for a diagnostic hierarchy distinguished possible, probable, and definite bvFTD based on the number of symptoms present.
Because symptoms of ALS can be similar to those of a wide variety of other, more treatable diseases or disorders, appropriate tests must be conducted to exclude the possibility of other conditions. One of these tests is electromyography (EMG), a special recording technique that detects electrical activity in muscles. Certain EMG findings can support the diagnosis of ALS. Another common test measures nerve conduction velocity (NCV). Specific abnormalities in the NCV results may suggest, for example, that the person has a form of peripheral neuropathy (damage to peripheral nerves) or myopathy (muscle disease) rather than ALS. While a magnetic resonance imaging (MRI) is often normal in people with early stage ALS, it can reveal evidence of other problems that may be causing the symptoms, such as a spinal cord tumor, multiple sclerosis, a herniated disk in the neck, syringomyelia, or cervical spondylosis.
Based on the person's symptoms and findings from the examination and from these tests, the physician may order tests on blood and urine samples to eliminate the possibility of other diseases, as well as routine laboratory tests. In some cases, for example, if a physician suspects the person may have a myopathy rather than ALS, a muscle biopsy may be performed.
Viral infectious diseases such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), Lyme disease, syphilis and tick-borne encephalitis can in some cases cause ALS-like symptoms. Neurological disorders such as multiple sclerosis, post-polio syndrome, multifocal motor neuropathy, CIDP, spinal muscular atrophy, and spinal and bulbar muscular atrophy can also mimic certain aspects of the disease and should be considered.
ALS must be differentiated from the "ALS mimic syndromes" which are unrelated disorders that may have a similar presentation and clinical features to ALS or its variants. Because of the prognosis carried by this diagnosis and the variety of diseases or disorders that can resemble ALS in the early stages of the disease, people with ALS symptoms should always obtain a specialist neurological opinion in order to rule out alternative diagnoses. Myasthenic syndrome, also known as Lambert–Eaton syndrome, can mimic ALS, and its initial presentation can be similar to that of myasthenia gravis (MG), a treatable autoimmune disease sometimes mistaken for ALS.
Benign fasciculation syndrome is another condition that mimics some of the early symptoms of ALS but is accompanied by normal EMG readings and no major disablement.
Most cases of ALS, however, are correctly diagnosed, with the error rate of diagnosis in large ALS clinics is less than 10%. One study examined 190 people who met the MND/ALS diagnostic criteria, complemented with laboratory research in compliance with both research protocols and regular monitoring. Thirty of these people (16%) had their diagnosis completely changed during the clinical observation development period. In the same study, three people had a false negative diagnosis of MG, which can mimic ALS and other neurological disorders, leading to a delay in diagnosis and treatment. MG is eminently treatable; ALS is not.
For diagnostic purposes, magnetic resonance imaging (MRI) and ([18F]fluorodeoxyglucose) positron emission tomography (FDG-PET) are applied. They measure either atrophy or reductions in glucose utilization. The three clinical subtypes of frontotemporal lobar degeneration, frontotemporal dementia, semantic dementia and progressive nonfluent aphasia, are characterized by impairments in specific neural networks. The first subtype with behavioral deficits, frontotemporal dementia, mainly affects a frontomedian network discussed in the context of social cognition. Semantic dementia is mainly related to the inferior temporal poles and amygdalae; brain regions that have been discussed in the context of conceptual knowledge, semantic information processing, and social cognition, whereas progressive nonfluent aphasia affects the whole left frontotemporal network for phonological and syntactical processing.
The symptoms of DLB overlap clinically with those of Alzheimer's disease and Parkinson's disease, but are associated more commonly with the latter. Because of this overlap, early DLB is often misdiagnosed. The overlap of neuropathological and presenting symptoms (cognitive, emotional, and motor) may make an accurate differential diagnosis difficult. In fact, DLB often is confused in its early stages with Alzheimer's disease and/or vascular dementia (multi-infarct dementia). However, while Alzheimer’s disease usually begins gradually, DLB frequently has a rapid or acute onset, with an especially rapid cognitive and physical decline in the first few months. Thus, DLB tends to progress more rapidly than Alzheimer’s disease. Despite the difficulty, a prompt diagnosis is important because of the risks of sensitivity to certain neuroleptic (antipsychotic) medications and because appropriate treatment of symptoms may improve life for both the person with DLB and the person's caregivers.
Dementia with Lewy bodies is distinguished from the dementia that sometimes occurs in Parkinson's disease by the time frame in which dementia symptoms appear relative to Parkinson symptoms. Parkinson's disease with dementia (PDD) would be the diagnosis when the onset of dementia is more than a year after the onset of Parkinsonian symptoms. DLB is diagnosed when cognitive symptoms begin at the same time or within a year of Parkinson symptoms.
Routine blood tests are also usually performed to rule out treatable causes. These tests include vitamin B, folic acid, thyroid-stimulating hormone (TSH), C-reactive protein, full blood count, electrolytes, calcium, renal function, and liver enzymes. Abnormalities may suggest vitamin deficiency, infection, or other problems that commonly cause confusion or disorientation in the elderly.
PSP is frequently misdiagnosed as Parkinson's disease because of the slowed movements and gait difficulty, or as Alzheimer's disease because of the behavioral changes. It is one of a number of diseases collectively referred to as Parkinson plus syndromes. A poor response to levodopa along with symmetrical onset can help differentiate this disease from PD. Also, patients with the Richardson variant tend to have an upright or arched-back posture as opposed to the stooped-forward posture of other Parkinsonian disorders, although PSP-Parkinsonism (see below) may show the stooped posture. Early falls are characteristic, especially with Richardson-syndrome.
No test can provide a definite diagnosis of ALS, although the presence of upper and lower motor neuron signs in a single limb is strongly suggestive. Instead, the diagnosis of ALS is primarily based on the symptoms and signs the physician observes in the person and a series of tests to rule out other diseases. Physicians obtain the person's full medical history and usually conduct a neurologic examination at regular intervals to assess whether symptoms such as muscle weakness, atrophy of muscles, hyperreflexia, and spasticity are worsening.
There are 3 main histological subtypes found at post-mortem:
- FTLD-tau is characterised by tau positive inclusions often referred to as Pick-bodies. Examples of FTLD-tau include; Pick's disease, corticobasal degeneration, progressive supranuclear palsy.
- FTLD-TDP (or FTLD-U ) is characterised by ubiquitin and TDP-43 positive, tau negative, FUS negative inclusions. The pathological histology of this subtype is so diverse it is subdivided into four subtypes based on the detailed histological findings:
Two physicians independently categorized the various forms of TDP-43 associated disorders. Both classifications were considered equally valid by the medical community, but the physicians in question have jointly proposed a compromise classification to avoid confusion.
- FTLD-FUS; which is characterised by FUS positive cytoplasmic inclusions, intra nuclear inclusions, and neuritic threads. All of which are present in the cortex, medulla, hippocampus, and motor cells of the spinal cord and XIIth cranial nerve.
Dementia lacking distinctive histology (DLDH) is a rare and controversial entity. New analyses have allowed many cases previously described as DLDH to be reclassified into one of the positively defined subgroups.
MSA usually progresses more quickly than Parkinson's disease. There is no remission from the disease. The average remaining lifespan after the onset of symptoms in patients with MSA is 7.9 years. Almost 80% of patients are disabled within five years of onset of the motor symptoms, and only 20% survive past 12 years. Rate of progression differs in every case and speed of decline may vary widely in individual patients.
O’Sullivan and colleagues (2008) identified early autonomic dysfunction to be the most important early clinical prognostic feature regarding survival in MSA. Patients with concomitant motor and autonomic dysfunction within three years of symptom onset had a shorter survival duration, in addition to becoming wheelchair dependent and bed-ridden at an earlier stage than those who developed these symptoms after three years from symptom onset. Their study also showed that when patients with early autonomic dysfunction develop frequent falling, or wheelchair dependence, or severe dysphagia, or require residential care, there is a shorter interval from this point to death.
Currently, an estimated 60 to 75% of diagnosed dementias are of the Alzheimer's and mixed (Alzheimer's and vascular dementia) type, 10 to 15% are Lewy body type, with the remaining types being of an entire spectrum of dementias, including frontotemporal lobar degeneration (Pick's disease), alcoholic dementia, pure vascular dementia, etc. Dementia with Lewy bodies tends to be under-recognized. Dementia with Lewy bodies is slightly more prevalent in men than women. DLB increases in prevalence with age; the mean age at presentation is 75 years.
Dementia with Lewy bodies affects about one million individuals in the United States.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
Pick's disease is a term that can be used in two different ways. It has traditionally been used as a term for a group of neurodegenerative diseases with symptoms attributable to frontal and temporal lobe dysfunction. Common symptoms that are noticed early are personality and emotional changes, as well as deterioration of language. This condition is now more commonly called frontotemporal dementia by professionals, and the use of "Pick's disease" as a clinical diagnosis has fallen out of fashion. The second use of the term (and the one now used among professionals) is to mean a specific pathology that is one of the causes of frontotemporal lobar degeneration. These two uses have previously led to confusion among professionals and patients and so its use should be restricted to the specific pathological subtype described below. It is also known as Pick disease and PiD (not to be confused with pelvic inflammatory disease (PID) or Parkinson's disease (PD)). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as "Pick bodies".
Definitive diagnosis of FTDP-17 requires a combination of characteristic clinical and pathological features and molecular genetic analysis. Genetic counseling should be offered to affected and at-risk individuals; for most subtypes, penetrance is incomplete.
The prognosis and rate of the diseases progression vary considerably among individual patients and genetic kindreds, ranging from life expectancies of several months to several years, and, in exceptional cases, as long as two decades.
Post-encephalitic Parkinsonism is a disease believed to be caused by a viral illness that triggers degeneration of the nerve cells in the substantia nigra. Overall, this degeneration leads to clinical parkinsonism.
Historically, starting in 1917 an epidemic of encephalitis lethargica, also called von Economo’s encephalitis or "sleepy-disease" occurred, possibly related to the 1918 Spanish flu pandemic; however, even with the use of modern molecular diagnostic tests on appropriate corpses no firm link between encephalitis lethargica with influenza has been made. Although parkinsonism was occasionally seen during the acute
encephalitic phase of encephalitis lethargica, it was often encountered in the post-encephalitic phase. The onset of post encephalitic
parkinsonism can be delayed by several years from the resolution of encephalitis lethargica.
The brain regions affected contain neurofibrillary tangles, similar to those seen in Alzheimer's disease. Nevertheless, the senile plaques common in Alzheimer's disease are not found.
The diagnosis of frontal lobe disorder can be divided into the following three categories:
- Clinical history
Frontal lobe disorders may be recognized through a sudden and dramatic change in a person's personality, for example with loss of social awareness, disinhibition, emotional instability, irritability or impulsiveness. Alternatively the disorder may become apparent because of mood changes such as depression, anxiety or apathy.
- Examination
On mental state examination a person with frontal lobe damage may show speech problems, with reduced verbal fluency. Typically the person is lacking in insight and judgment, but does not have marked cognitive abnormalities or memory impairment (as measured for example by the mini-mental state examination). With more severe impairment there may be echolalia or mutism. Neurological examination may show primitive reflexes (also known as frontal release signs) such as the grasp reflex. Akinesia (lack of spontaneous movement) will be present in more severe and advanced cases.
- Further investigation
A range of neuropsychological tests are available for clarifying the nature and extent of frontal lobe dysfunction. For example, concept formation and ability to shift mental sets can be measured with the Wisconsin Card Sorting Test, planning can be assessed with the Mazes subtest of the WISC. Individuals with Pick's disease will show frontal cortical atrophy on MRIs. Frontal impairment due to head injuries, tumours or cerebrovascular disease will also be apparent on brain imaging.