Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
The diagnosis is based on the combination of unusual facial features and the dysplastic or absent femurs.
Diagnosis may be made antenatally.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
There is no known specific treatment for this condition. Management is supportive.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
It can be detected by the naked eye as well as dental or skull X-Ray testing.
There are two less common types of McGillivray syndromes are: Metopic synostosis (trigonocephaly). The metopic suture runs from your baby's nose to the sagittal suture. Premature fusion gives the scalp a triangular appearance. Another one is Lambdoid synostosis (posterior plagiocephaly). This rare form of craniosynostosis involves the lambdoid suture, which runs across the skull near the back of the head. It may cause flattening of your baby's head on the affected side. A misshapen head doesn't always indicate craniosynostosis. For example, if the back of your baby's head appears flattened, it could be the result of birth trauma or your baby's spending too much time on his or her back. This condition is sometimes treated with a custom-fit helmet that helps mold your baby's head back into a normal position.
At present, treatment for proximal 18q- is symptomatic, meaning that the focus is on treating the signs and symptoms of the condition as they arise.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Diagnosis is made based on features as well as by the very early onset of serious eye and ear disease. Because Marshall syndrome is an autosomal dominant hereditary disease, physicians can also note the characteristic appearance of the biological parent of the child. There are no tests for Stickler syndrome or Marshall syndrome. Some families with Stickler syndrome have been shown to have mutations in the Type II collagen gene on chromosome 1. However, other families do not show the linkage to the collagen gene. It is an area of active research, also the genetic testing being expensive supports that the diagnosis is made depending on the features.
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
First of all there is physical exam. Doctors examine baby’s head for abnormalities such as suture ridges and look the facial deformities. Also, they utilizes Computerized Tomography which scan of the baby’s skull. Fused sutures are identifiable by their absences. X-rays also may be used to measure precise dimensions of your baby's skull, using a technique called cephalometry.
Genetic testing. If your doctor suspects your baby's misshapen skull is caused by an underlying hereditary syndrome, genetic testing may help identify the syndrome. Genetic tests usually require a blood sample. Depending on what type of abnormality is suspected, your doctor may take a sample of your baby's hair, skin or other tissue, such as cells from the inside of the cheek. The sample is sent to a lab for analysis.
The syndrome is generally diagnosed clinically shortly after birth. The infant usually has respiratory difficulty, especially when supine. The cleft palate is often U-shaped and wider than in cleft palate that is not associated with this syndrome.
Currently, research is focusing on identifying the role of the genes on 18q in causing the signs and symptoms associated with proximal deletions of 18q.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
Osteofibrous dysplasia is treated with marginal resection with or without bone grafting, depending on the size of the lesion and the extent of bony involvement. However, due to the high rate of recurrence in skeletally immature individuals, this procedure is usually postponed until skeletal maturity.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
Currently there are only around 26 people in the world that are known to have this rare condition. Inheritance is thought to be X-linked recessive.
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.