Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In "Acanthamoeba" infections, the diagnosis can be made from microscopic examination of stained smears of biopsy specimens (brain tissue, skin, cornea) or of corneal scrapings, which may detect trophozoites and cysts. Cultivation of the causal organism, and its identification by direct immunofluorescent antibody, may also prove useful. Laboratory workers and physicians often mistake the organisms on wet mount for monocytes and a diagnosis of viral meningitis is mistakenly given if the organisms are not motile. Heating a copper penny with an alcohol lamp and placing it on the wet mount slide will activate sluggish trophozoites and more rapidly make the diagnosis. If the person performing the spinal tap rapidly looks at the heated wet mount slide the trophozoites can be seen to swarm while monocytes do not.
"N. fowleri" can be grown in several kinds of liquid axenic media or on non-nutrient agar plates coated with bacteria. "Escherichia coli" can be used to overlay the non-nutrient agar plate and a drop of cerebrospinal fluid sediment is added to it. Plates are then incubated at 37 °C and checked daily for clearing of the agar in thin tracks, which indicate the trophozoites have fed on the bacteria. Detection in water is performed by centrifuging a water sample with "E. coli" added, then applying the pellet to a non-nutrient agar plate. After several days, the plate is microscopically inspected and "Naegleria" cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods.
Confirmation of "Naegleria" presence can be done by a so-called flagellation test, where the organism is exposed to a hypotonic environment (distilled water). "Naegleria", in contrast to other amoebae, differentiates within two hours into the flagellate state.
Pathogenicity can be further confirmed by exposure to high temperature (42 °C): "Naegleria fowleri" is able to grow at this temperature, but the nonpathogenic "Naegleria gruberi" is not.
Eye and skin infections caused by "Acanthamoeba spp." are generally treatable. Topical use of 0.1% propamidine isethionate (Brolene) plus neomycin-polymyxin B-gramicidin ophthalmic solution has been a successful approach; keratoplasty is often necessary in severe infections. Although most cases of brain (CNS) infection with "Acanthamoeba" have resulted in death, patients have recovered from the infection with proper treatment.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
Fumagillin has been used in the treatment.
Another agent used is albendazole.
A brain biopsy will reveal the presence of infection by pathogenic amoebas. In GAE, these present as general inflammation and sparse granules. On microscopic examination, infiltrates of amoebic cysts and/or trophozoites will be visible.
There is currently no known treatment for Aleutian virus. When evidence of ADV shows in a ferret, it is strongly recommended that a CEP (counterimmunoelectrophoresis) blood test or an IFA (immunoflourescent antibody) test be done. The CEP test is usually faster and less expensive than the IFA test, but the IFA test is more sensitive and can detect the disease in borderline cases.
Additionally modern methods such as Real-Time PCR allow for rapid and accurate detection as well as determination of the amount of viron present.
Prevention is best accomplished by stopping the spread of ADV. Any new ferret, or those who have been confirmed as serum positive for the virus should be perpetually isolated from other ferrets. All items that may have come into contact with the infected ferret should be cleaned with a 10% bleach solution.
This is a growing concern within mink producers as it is the most crucial infectious disease which affects farmed mink worldwide.
GAE, in general, must be treated by killing the pathogenic amoebas which cause it.
Dependent on the infectious syndrome, symptoms include fever, fatigue, dry cough, headache, blurred vision, and confusion. Symptom onset is often subacute, progressively worsened over several weeks. The two most common presentations are meningitis (an infection in and around the brain) and pulmonary (lung) infection.
Detection of cryptococcal antigen (capsular material) by culture of CSF, sputum and urine provides definitive diagnosis. Blood cultures may be positive in heavy infections. India ink of the CSF is a traditional microscopic method of diagnosis, although the sensitivity is poor in early infection, and may miss 15-20% of patients with culture-positive cryptococcal meningitis. Unusual morphological forms are rarely seen. Cryptococcal antigen from cerebrospinal fluid is the best test for diagnosis of cryptococcal meningitis in terms of sensitivity. Apart from conventional methods of detection like direct microscopy and culture, rapid diagnostic methods to detect cryptococcal antigen by latex agglutination test, lateral flow immunochromatographic assay (LFA), or enzyme immunoassay (EIA). A new cryptococcal antigen LFA was FDA approved in July 2011. Polymerase chain reaction (PCR) has been used on tissue specimens.
Cryptococcosis can rarely occur in the non-immunosuppressed people, particularly with "Cryptococcus gattii".
Extensive treatments have been used on domestic animals more than on wild animals, probably because infected domestic animals are easier to identify and treat than infected wildlife. Treatment plans and management vary across taxa because this disease tends to affect each species differently. Antifungal drugs are the first line of defense to kill the agents causing phaeohyphomycosis, but despite the significant progress made in the last two decades and a 30% increase in available antifungal drugs since 2000, many drugs are not effective against black fungi. Diseases caused black fungi are hard to treat because the fungi are very difficult to kill. This high resilience may be contributed to the presence of melanin in their cell walls. Current antifungal agents the fungi are not resistant to are posaconazole, voriconazole, and azole isavuconazole.
In 2006, a free-living Eastern box turtle, "Terrapene carolina carolina", was found with a form of phaeohyphomycosis and was brought in the Wildlife Center of Virginia. Its symptom was swelling of the right hindfoot; it was diagnosed as having chromomycosis by histopathology. The center provided a series of antimicrobial treatments and a one-month course of 1 mg itraconazole, administered orally once a day. The eastern box turtle was euthanized due to further complications and the caretakers’ belief that the turtle would not be able to survive if placed back in the wild.
A recent case of a form of phaeohyphomycosis infection was found in a dog in 2011. The Journal of the American Veterinary Medical Association published a case study in which researchers successfully managed an intracranial phaeohyphomycotic fungal granuloma in a one-year-old male Boxer dog. Veterinarians of the Department of Veterinary Clinical Sciences at Tufts University surgically removed the granuloma in the right cerebral hemisphere. The patient was treated with fluconazole for 4 months, and was followed with voriconazole for 10 months. Both are medications used to treat fungal infections. Based on magnetic resonance imaging and cerebrospinal fluid (CSF) analysis 8 months after the surgery, the male Boxer’s outcome was considered excellent.
Emphasis has been placed on how to manage this disease through careful management practices including: proper handling, preventing crowding situation with animals, and transportation. Both the animals and the environment should be treated thoroughly to hinder the spread and control the fungal infection. This is especially important since humans can also contract this disease.
Tender or enlarged inguinal lymph nodes or swelling in the extremities can alert physicians or public health officials to infection.
With appropriate laboratory equipment, microscopic examination of differential morphological features of microfilariae in stained blood films can aid diagnosis—in particular the examination of the tail portion, the presence of a sheath, and the size of the cephalic space. Giemsa staining will uniquely stain "B. malayi" sheath pink. However, blood films can prove difficult given the nocturnal periodicity of some forms of "B. malayi".
PCR based assays are highly sensitive and can be used to monitor infections both in the human and the mosquito vector. However, PCR assays are time-consuming, labor-intensive and require laboratory equipment. Lymphatic filariasis mainly affects the poor, who live in areas without such resources.
The ICT antigen card test is widely used in the diagnosis of "W. bancrofti", but commercial antigens of "B. malayi" have not been historically widely available. However, new research developments have identified a recombinant antigen (BmR1) that is both specific and sensitive in the detection of IgG4 antibodies against "B. malayi" and "B. timori" in ELISA and immunochromatographic rapid dipstick (Brugia Rapid) test. However, it appears that immunoreactivity to this antigen is variable in individuals infected with other filarial nematodes. This research has led to the development of two new rapid immunochromatographic IgG4 cassette tests – WB rapid and panLF rapid – which detect bancroftian filariasis and all three species of lymphatic filariasis, respectively, with high sensitivity and selectivity.
The immune reconstitution inflammatory syndrome (IRIS) has been described in those with normal immune function with meningitis caused by "C. gattii" and "C. grubii". Several weeks or even months into appropriate treatment, there can be deterioration with worsening meningitis symptoms and progression or development of new neurological symptoms. IRIS is however much more common in those with poor immune function (≈25% vs. ≈8%).
Magnetic resonance imaging shows increase in the size of brain lesions, and CSF abnormalities (white cell count, protein, glucose) increase. Radiographic appearance of cryptococcal IRIS brain lesions can mimic that of toxoplasmosis with ring enhancing lesions on head computed tomography (CT). CSF culture is sterile, and there is no increase in CSF cryptococcal antigen titre.
The increasing inflammation can cause brain injury or be fatal.
The mechanism behind IRIS in cryptococcal meningitis is primarily immunologic. With reversal of immunosuppression, there is paradoxical increased inflammation as the recovering immune system recognises the fungus. In severe IRIS cases, treatment with systemic corticosteroids has been utilized - although evidence-based data are lacking.
Antibody detection can be useful to indicate schistosome infection in people who have traveled to areas where schistosomiasis is common and in whom eggs cannot be demonstrated in fecal or urine specimens. Test sensitivity and specificity vary widely among the many tests reported for the serologic diagnosis of schistosomiasis and are dependent on both the type of antigen preparations used (crude, purified, adult worm, egg, cercarial) and the test procedure.
At CDC, a combination of tests with purified adult worm antigens is used for antibody detection. All serum specimens are tested by FAST-ELISA using "S. mansoni" adult microsomal antigen (MAMA). A positive reaction (greater than 9 units/µl serum) indicates infection with "Schistosoma" species. Sensitivity for "S. mansoni" infection is 99 percent, 95 percent for "S. haematobium" infection, and less than 50 percent for "S. japonicum" infection. Specificity of this assay for detecting schistosome infection is 99 percent. Because test sensitivity with the FAST-ELISA is reduced for species other than "S. mansoni", immunoblots of the species appropriate to the patient's travel history are also tested to ensure detection of "S. haematobium" and "S. japonicum" infections. Immunoblots with adult worm microsomal antigens are species-specific and so a positive reaction indicates the infecting species. The presence of antibody is indicative only of schistosome infection at some time and cannot be correlated with clinical status, worm burden, egg production, or prognosis. Where a person has traveled can help determine what "Schistosoma" species to test for by immunoblot.
In 2005, a field evaluation of a novel handheld microscope was undertaken in Uganda for the diagnosis of intestinal schistosomiasis by a team led by Russell Stothard from the Natural History Museum of London, working with the Schistosomiasis Control Initiative, London.
This condition is diagnosed by detecting the bacteria in skin, blood, joint fluid, or lymph nodes. Blood antibody tests may also be used. To get a proper diagnosis for rat-bite fever, different tests are run depending on the symptoms being experienced.
To diagnosis streptobacillary rat-bite fever, blood or joint fluid is extracted and the organisms living in it are cultured. Diagnosis for spirillary rat bite fever is by direct visualization or culture of spirilla from blood smears or tissue from lesions or lymph nodes. Treatment with antibiotics is the same for both types of infection. The condition responds to penicillin, and where allergies to it occur, erythromycin or tetracyclines are used.
The condition is diagnosed by finding live lice in the hair. Finding empty eggs is not enough. This is made easier by using a magnifying glass or running a comb through the child's hair. In questionable cases, a child can be referred to a health professional. However, the condition is overdiagnosed, with extinct infestations being mistaken for active ones. As a result, lice-killing treatments are more often used on noninfested than infested children. The use of a louse comb is the most effective way to detect living lice. With both methods, special attention should be paid to the area near the ears and the nape of the neck. The use of a magnifying glass to examine the material collected between the teeth of the comb could prevent misdiagnosis.
The presence of nits alone, however, is not an accurate indicator of an active head louse infestation. Generally, white nits are empty egg casings, while brown nits may still contain viable louse larva. One way of determining the nit is to squeeze it between two fingernails; it gives a characteristic snapping pop sound as the egg bursts. Children with nits on their hair have a 35–40% chance of also being infested with living lice and eggs. If lice are detected, the entire family needs to be checked (especially children up to the age of 13 years) with a louse comb, and only those who are infested with living lice should be treated. As long as no living lice are detected, the child should be considered negative for head louse infestation. Accordingly, a child should be treated with a pediculicide only when living lice are detected on their hair (not because he/she has louse eggs/nits on the hair and not because the scalp is itchy).
They are treated with antiprotozoal agents. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Microsporidiosis is an opportunistic intestinal infection that causes diarrhea and wasting in immunocompromised individuals (HIV, for example). It results from different species of microsporidia, a group of microbial (unicellular) fungi.
In HIV infected individuals, microsporidiosis generally occurs when CD4+ T cell counts fall below 150.
Diagnosis of infection is confirmed by the identification of eggs in stools. Eggs of "S. mansoni" are approximately 140 by 60 µm in size, and have a lateral spine. The diagnosis is improved by the use of the Kato-Katz technique (a semi-quantitative stool examination technique). Other methods that can be used are enzyme-linked immunosorbent assay (ELISA), circumoval precipitation test, and alkaline phosphatase immunoassay.
Microscopic identification of eggs in stool or urine is the most practical method for diagnosis. Stool examination should be performed when infection with "S. mansoni" or "S. japonicum" is suspected, and urine examination should be performed if "S. haematobium" is suspected. Eggs can be present in the stool in infections with all "Schistosoma" species. The examination can be performed on a simple smear (1 to 2 mg of fecal material). Since eggs may be passed intermittently or in small amounts, their detection will be enhanced by repeated examinations and/or concentration procedures. In addition, for field surveys and investigational purposes, the egg output can be quantified by using the Kato-Katz technique (20 to 50 mg of fecal material) or the Ritchie technique. Eggs can be found in the urine in infections with "S. haematobium" (recommended time for collection: between noon and 3 PM) and with "S. japonicum". Quantification is possible by using filtration through a nucleopore filter membrane of a standard volume of urine followed by egg counts on the membrane. Tissue biopsy (rectal biopsy for all species and biopsy of the bladder for "S. haematobium") may demonstrate eggs when stool or urine examinations are negative.
When proper treatment is provided for patients with rat-bite fever, the prognosis is positive. Without treatment, the infection usually resolves on its own, although it may take up to a year to do so. A particular strain of rat-bite fever in the United States can progress and cause serious complications that can be potentially fatal. Before antibiotics were used, many cases resulted in death. If left untreated, streptobacillary rat-bite fever can result in infection in the lining of the heart, covering over the spinal cord and brain, or in the lungs. Any tissue or organ throughout the body may develop an abscess.
Human’s clinical signs consisted of swelling and eye infections. There were nodules underneath the skin, abscesses or cysts, and lesions running throughout the body. There were papules, plaques and granulomatous damages on the body. In extreme cases there were deep infections within the eyes, bones, heart and central nervous system.
With colonoscopy it is possible to detect small ulcers of between 3–5mm, but diagnosis may be difficult as the mucous membrane between these areas can look either healthy or inflamed.
Asymptomatic human infections are usually diagnosed by finding cysts shed in the stool. Various flotation or sedimentation procedures have been developed to recover the cysts from fecal matter and stains help to visualize the isolated cysts for microscopic examination. Since cysts are not shed constantly, a minimum of three stools are examined. In symptomatic infections, the motile form (the trophozoite) is often seen in fresh feces. Serological tests exist, and most infected individuals (with symptoms or not) test positive for the presence of antibodies. The levels of antibody are much higher in individuals with liver abscesses. Serology only becomes positive about two weeks after infection. More recent developments include a kit that detects the presence of amoeba proteins in the feces, and another that detects ameba DNA in feces. These tests are not in widespread use due to their expense.
Microscopy is still by far the most widespread method of diagnosis around the world. However it is not as sensitive or accurate in diagnosis as the other tests available. It is important to distinguish the "E. histolytica" cyst from the cysts of nonpathogenic intestinal protozoa such as "Entamoeba coli" by its appearance. "E. histolytica" cysts have a maximum of four nuclei, while the commensal "Entamoeba coli" cyst has up to 8 nuclei. Additionally, in "E. histolytica," the endosome is centrally located in the nucleus, while it is usually off-center in "Entamoeba coli." Finally, chromatoidal bodies in "E. histolytica" cysts are rounded, while they are jagged in "Entamoeba coli". However, other species, "Entamoeba dispar" and "E. moshkovskii", are also commensals and cannot be distinguished from "E. histolytica" under the microscope. As "E. dispar" is much more common than "E. histolytica" in most parts of the world this means that there is a lot of incorrect diagnosis of "E. histolytica" infection taking place. The WHO recommends that infections diagnosed by microscopy alone should not be treated if they are asymptomatic and there is no other reason to suspect that the infection is actually "E. histolytica". Detection of cysts or trophozoites stools under microscope may require examination of several samples over several days to determine if they are present, because cysts are shed intermittently and may not show up in every sample.
Typically, the organism can no longer be found in the feces once the disease goes extra-intestinal. Serological tests are useful in detecting infection by "E. histolytica" if the organism goes extra-intestinal and in excluding the organism from the diagnosis of other disorders. An Ova & Parasite (O&P) test or an "E. histolytica" fecal antigen assay is the proper assay for intestinal infections. Since antibodies may persist for years after clinical cure, a positive serological result may not necessarily indicate an active infection. A negative serological result however can be equally important in excluding suspected tissue invasion by "E. histolytica".
"Balamuthia" infection is a cutaneous condition resulting from "Balamuthia" that may result in various skin lesions.
"Balamuthia mandrillarisis" a free-living amoeba (a single-celled living organism) found in the environment. It is one of the causes of granulomatous amoebic encephalitis (GAE), a serious infection of the brain and spinal cord. "Balamuthia" is thought to enter the body when soil containing it comes in contact with skin wounds and cuts, or when dust containing it is breathed in or gets in the mouth. The "Balamuthia" amoebae can then travel to the brain through the blood stream and cause GAE. GAE is a very rare disease that is usually fatal.
Scientists at the Centers for Disease Control and Prevention (CDC) first discovered "Balamuthia mandrillaris" in 1986. The amoeba was found in the brain of a dead mandrill. After extensive research, "B. mandrillaris" was declared a new species in 1993. Since then, more than 200 cases of "Balamuthia" infection have been diagnosed worldwide, with at least 70 cases reported in the United States. Little is known at this time about how a person becomes infected.
The Global Alliance to Eliminate Lymphatic Filariasis was launched by the World Health Organization in 2000 with two primary goals: 1) to interrupt transmission and 2) to alleviate the suffering of affected individuals. Mass drug treatment programs are the main strategy for interrupting parasite transmission, and morbidity management, focusing on hygiene, improves the quality of life of infected individuals.
Examination of the child's head at regular intervals using a louse comb allows the diagnosis of louse infestation at an early stage. Early diagnosis makes treatment easier and reduces the possibility of infesting others. In times and areas when louse infestations are common, weekly examinations of children, especially those 4–15 years old, carried out by their parents, will aid control. Additional examinations are necessary if the child came in contact with infested individuals, if the child frequently scratches his/her head, or if nits suddenly appear on the child's hair. Keeping long hair tidy could be helpful in the prevention of infestations with head lice.
Clothes, towels, bedding, combs, and brushes, which came in contact with the infested individual, can be disinfected either by leaving them outside for at least two days or by washing them at 60 °C (140 degrees F) for 30 minutes. This is because adult lice can survive only one to two days without a blood meal and are highly dependent on human body warmth. An insecticidal treatment of the house and furniture is not necessary.
In the majority of cases, amoebas remain in the gastrointestinal tract of the hosts. Severe ulceration of the gastrointestinal mucosal surfaces occurs in less than 16% of cases. In fewer cases, the parasite invades the soft tissues, most commonly the liver. Only rarely are masses formed (amoebomas) that lead to intestinal obstruction.(Mistaken for Ca caecum and appendicular mass) Other local complications include bloody diarrhea, pericolic and pericaecal abscess.
Complications of hepatic amoebiasis includes subdiaphragmatic abscess, perforation of diaphragm to pericardium and pleural cavity, perforation to abdominal cavital "(amoebic peritonitis)" and perforation of skin "(amoebiasis cutis)".
Pulmonary amoebiasis can occur from hepatic lesion by haemotagenous spread and also by perforation of pleural cavity and lung. It can cause lung abscess, pulmono pleural fistula, empyema lung and broncho pleural fistula. It can also reach the brain through blood vessels and cause amoebic brain abscess and amoebic meningoencephalitis. Cutaneous amoebiasis can also occur in skin around sites of colostomy wound, perianal region, region overlying visceral lesion and at the site of drainage of liver abscess.
Urogenital tract amoebiasis derived from intestinal lesion can cause amoebic vulvovaginitis "(May's disease)", rectovesicle fistula and rectovaginal fistula.
"Entamoeba histolytica" infection is associated with malnutrition and stunting of growth.