Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Amniocentesis or chorionic villus sampling can be used to screen for the disease before birth. After birth, urine tests, along with blood tests and skin biopsies can be used to diagnose Schindler disease. Genetic testing is also always an option, since different forms of Schindler disease have been mapped to the same gene on chromosome 22; though different changes (mutations) of this gene are responsible for the infantile- and adult-onset forms of the disease.
Infants with Schindler disease tend to die within 4 years of birth, therefore, treatment for this form of the disease is mostly palliative. However, Type II Schindler disease, with its late onset of symptoms, is not characterized by neurological degeneration. There is no known cure for Schindler disease, but bone marrow transplants have been trialed, as they have been successful in curing other glycoprotein disorders.
Fabry disease is suspected based on the individual's clinical presentation, and can be diagnosed by an enzyme assay (usually done on leukocytes) to measure the level of alpha-galactosidase activity. An enzyme assay is not reliable for the diagnosis of disease in females due to the random nature of X-inactivation. Molecular genetic analysis of the "GLA" gene is the most accurate method of diagnosis in females, particularly if the mutations have already been identified in male family members. Many disease-causing mutations have been noted. Kidney biopsy may also be suggestive of Fabry disease if excessive lipid buildup is noted. Pediatricians, as well as internists, commonly misdiagnose Fabry disease.
The disease may be diagnosed by its characteristic grouping of certain cells (multinucleated globoid cells), nerve demyelination and degeneration, and destruction of brain cells. Special stains for myelin (e.g.; luxol fast blue) may be used to aid diagnosis.
Protein function tests that demonstrate a reduce in chorein levels and also genetic analysis can confirm the diagnosis given to a patient. For a disease like this it is often necessary to sample the blood of the patient on multiple occasions with a specific request given to the haematologist to examine the film for acanthocytes. Another point is that the diagnosis of the disease can be confirmed by the absence of chorein in the western blot of the erythrocyte membranes.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
Urbach–Wiethe disease is typically diagnosed by its clinical dermatological manifestations, particularly the beaded papules on the eyelids. Doctors can also test the hyaline material with a periodic acid-Schiff (PAS) staining, as the material colors strongly for this stain.
Immunohistochemical skin labeling for antibodies for the ECM1 protein as labeling has been shown to be reduced in the skin of those affected by Urbach–Wiethe disease. Staining with anti-type IV collagen antibodies or anti-type VII collagen antibodies reveals bright, thick bands at the dermoepidermal junction.
Non-contrast CT scans can image calcifications, but this is not typically used as a means of diagnosing the disease. This is partly due to the fact that not all Urbach-Wiethe patients exhibit calcifications, but also because similar lesions can be formed from other diseases such as herpes simplex and encephalitis. The discovery of mutations within the ECM1 gene has allowed the use of genetic testing to confirm initial clinical diagnoses of Urbach–Wiethe disease. It also allows doctors to better distinguish between Urbach–Wiethe disease and other similar diseases not caused by mutations in ECM1.
The diagnosis is clinical, not based upon serology. At least seven sets of diagnostic criteria have been devised, however the Yamaguchi criteria have the highest sensitivity. Diagnosis requires at least five features, with at least two of these being major diagnostic criteria.
Diagnosis of Dercum's disease is done through a physical examination. In order to properly diagnose the patient, the doctor must first exclude all other possible differential diagnosis. The basic criteria for Dercum's disease are patients with chronic pain in the adipose tissue (body fat) and patients who are also obese. Although rare, the diagnosis may not include obesity. Dercum's disease can also be inherited and a family medical history may aid in the diagnosis of this disease. There are no specific laboratory test for this disease. Ultrasound and magnetic resonance imaging can play a role in diagnosis.
Batten disease is rare, so may result in misdiagnosis, which in turn causes increased medical expenses, family stress, and the chance of using incorrect forms of treatment. Nevertheless, Batten disease can be diagnosed if properly detected. Vision impairment is the most common observable symptom to detect the disease. Children are more prevalent, and should be suspected more for juvenile Batten disease. Children or someone suspected to have Batten disease should initially be seen by an optometrist or ophthalmologist. A fundus eye examination that aids in the detection of common vision impairment abnormalities, such as granularity of the retinal pigment epithelium in the central macula will be performed. Though it is also seen in a variety of other diseases, a loss of ocular cells should be a warning sign of Batten disease. If Batten disease is the suspected diagnosis, a variety of tests is conducted to help accurately confirm the diagnosis, including:
- Blood or urine tests can help detect abnormalities that may indicate Batten disease. For example, elevated levels of dolichol in urine have been found in many individuals with NCL. The presence of vacuolated lymphocytes—white blood cells that contain holes or cavities (observed by microscopic analysis of blood smears)—when combined with other findings that indicate NCL, is suggestive for the juvenile form caused by "CLN3" mutations.
- Skin or tissue sampling is performed by extracting a small piece of tissue, which then is examined under an electron microscope. This can allow physicians to detect typical NCL deposits. These deposits are common in tissues such as skin, muscle, conjunctiva, and rectum. This diagnostic technique is useful, but other invasive tests are more reliable for diagnosing Batten disease.
- Electroencephalogram (EEG) is a technique that uses special probes attached on to the individual's scalp. It records electrical currents/signals, which allow medical experts to analylze electrical pattern activity in the brain. EEG assists in observing if the patient has seizures.
- Electrical studies of the eyes are used, because as mentioned, vision loss is the most common characteristic of Batten disease. Visual-evoked responses and electroretinograms are effective tests for detecting various eye conditions common in childhood NCLs.
- Computed tomography (CT) or magnetic resonance imaging (MRI) are diagnostic imaging tests which allow physicians to better visualize the appearance of the brain. MRI imaging test uses magnetic fields and radio waves to help create images of the brain. CT scan uses x-rays and computers to create a detailed image of the brain's tissues and structures. Both diagnostic imaging test can help reveal brain areas that are decaying, or atrophic, in persons with NCL.
- Measurement of enzyme activity specific to Batten disease may help confirm certain diagnoses caused by different mutations. Elevated levels of palmitoyl-protein thioesterase is involved in "CLN1". Acid protease is involved in "CLN2". Cathepsin D is involved in "CLN10".
- DNA analysis can be used to help confirm the diagnosis of Batten disease. When the mutation is known, DNA analysis can also be used to detect unaffected carriers of this condition for genetic counseling. If a family mutation has not previously been identified or if the common mutations are not present, recent molecular advances have made it possible to sequence all of the known NCL genes, increasing the chances of finding the responsible mutation(s).
In infantile Krabbe disease, death usually occurs in early childhood. A 2011 study found 1, 2, 3 year survival rates of 60%, 26%, and 14%, respectively. A few survived for longer and one was still alive at age 13. Patients with late-onset Krabbe disease tend to have a slower progression of the disease and live significantly longer.
Common clinical signs and symptoms of Whipple's disease include diarrhea, steatorrhea, abdominal pain, weight loss, migratory arthropathy, fever, and neurological symptoms. Weight loss and diarrhea are the most common symptoms that lead to identification of the process, but may be preceded by chronic, unexplained, relapsing episodes of non-destructive seronegative arthritis, often of large joints.
Diagnosis is made by biopsy, usually by duodenal endoscopy, which reveals PAS-positive macrophages in the lamina propria containing non-acid-fast gram-positive bacilli. Immunohistochemical staining for antibodies against "T. whipplei" has been used to detect the organism in a variety of tissues, and a PCR-based assay is also available. PCR can be confirmatory if performed on blood, vitreous fluid, synovial fluid, heart valves, or cerebrospinal fluid. PCR of saliva, gastric or intestinal fluid, and stool specimens is highly sensitive, but not specific enough, indicating that healthy individuals can also harbor the causative bacterium without the manifestation of Whipple's disease, but that a negative PCR is most likely indicative of a healthy individual.
Endoscopy of the duodenum and jejunum can reveal pale yellow shaggy mucosa with erythematous eroded patches in patients with classic intestinal Whipple's disease, and small bowel X-rays may show some thickened folds. Other pathological findings may include enlarged mesenteric lymph nodes, hypercellularity of lamina propria with "foamy macrophages", and a concurrent decreased number of lymphocytes and plasma cells, per high power field view of the biopsy.
A D-Xylose test can be performed, which is where the patient will consume 4.5g of D-xylose, a sugar, by mouth. The urine excretion of D-Xylose is then measured after 5 hours. The majority of D-Xylose is absorbed normally, and should be found in the urine. If the D-Xylose is found to be low in the urine, this suggests an intestinal malabsorption problem such as bacterial overgrowth of the proximal small intestine, Whipple's Disease, or an autoimmune with diseases such as Celiac's Disease (allergy to gluten) or Crohn's Disease (autoimmune disease affecting the small intestine). With empiric antibiotic treatment after an initial positive D-Xylose test, and if a follow-up D-Xylose test is positive (decreased urine excretion) after antibiotic therapy, then this would signify it is not bacterial overgrowth of the proximal small intestine. Since Whipple's disease is so rare, a follow-up positive D-Xylose test more likely indicates a non-infectious etiology and more likely an autoimmune etiology. Clinical correlation is recommended to rule out Whipple's disease.
Franklin's disease (gamma heavy chain disease)
It is a very rare B-cell lymphoplasma cell proliferative disorder which may be associated with autoimmune diseases and infection is a common characteristic of the disease. It is characterized by lymphadenopathy, fever, anemia, malaise, hepatosplenomegaly, and weakness. The most distinctive symptom is palatal edema, caused by nodal involvement of Waldeyer's ring.
Diagnosis is made by the demonstration of an anomalous serum M component that reacts with anti-IgG but not anti-light chain reagents. Bone marrow examination is usually nondiagnostic.
Patients usually have a rapid downhill course and die of infection if left untreated or misdiagnosed.
Patients with Franklin disease usually have a history of progressive weakness, fatigue, intermittent fever, night sweats and weight loss and may present with lymphadenopathy (62%), splenomegaly (52%) or hepatomegaly (37%). The fever is considered secondary to impaired cellular and humoral immunity, and thus recurrent infections are the common clinical presentation in Franklin disease. Weng et al. described the first case of Penicillium sp. infection in a patient with Franklin disease and emphasized the importance of proper preparation for biopsy, complete hematologic investigation, culture preparation and early antifungal coverage to improve the outcome.
The γHCD can be divided into three categories based on the various clinical and pathological features. These categories are disseminated lymphoproliferative disease, localized proliferative disease and no apparent proliferative disease.
- Disseminated lymphoproliferative disease is found in 57-66% of patients diagnosed with γHCD. Lymphadenopathy and constitutional symptoms are the usual features.
- Localized proliferative disease is found in approximately 25% of γHCD patients. This is characterized by a localization of the mutated heavy chains in extramedullary tissue, or solely in the bone marrow.
- No apparent proliferative disease is seen in 9-17% of patients with γHCD, and there is almost always an underlying autoimmune disorder.
The twins require the use of wheelchairs for mobility and are unable to speak without the assistance of electronic speaking aids. They experience persistent and painful muscle spasms which are worsened by emotional distress. They are currently living with their parents, with the assistance of hospice workers. Doctors continue to administer tests to the twins in search of a treatment.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
There is no specific treatment for Farber disease. Corticosteroids may be prescribed to relieve pain. Bone marrow transplants may improve granulomas (small masses of inflamed tissue) on patients with little or no lung or nervous system complications. Older patients may have granulomas surgically reduced or removed.
Life expectancy with Fabry disease for males was 58.2 years, compared with 74.7 years in the general population, and for females 75.4 years compared with 80.0 years in the general population, according to registry data from 2001 to 2008. The most common cause of death was cardiovascular disease, and most of those had received kidney replacements.
People with AOSD generally experience one of two patterns in the disease:
- a debilitating pattern of fevers, pain, and other systemic symptoms, or
- a somewhat less aggressive pattern, in which the main symptom is arthritis and chronic joint pain.
One set of 21 adult-onset Still's disease patients were divided into four types, according to clinical course patterns. These included monocyclic systemic disease, polycyclic systemic disease, chronic articular monocyclic systemic disease, and chronic articular polycyclic systemic disease. People with chronic articular disease and polyarticular disease were at higher risk to develop disabling arthritis.
The IgM type of heavy chain disease, μHCD, is often misdiagnosed as chronic lymphoid leukemia (CLL) because the two diseases are often associated with each other and show similar symptoms.
There are three types of Sandhoff disease: classic infantile, juvenile, and adult late onset. Each form is classified by the severity of the symptoms as well as the age at which the patient shows these symptoms.
- Classic infantile form of the disease is classified by the development of symptoms anywhere from 2 months to 9 months of age. It is the most severe of all of the forms and will lead to death before the patient reaches the age of three. This is the most common and severe form of Sandhoff disease. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, dementia, and paralysis. An eye abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. Some infants with Sandhoff disease may have enlarged organs (organomegaly) or bone abnormalities. Children with the severe form of this disorder usually live only into early childhood.
- Juvenile form of the disease shows symptoms starting at age 3 ranging to age 10 and, although the child usually dies by the time they are 15, it is possible for them to live longer if they are under constant care. Symptoms include autism, ataxia, motor skills regression, spacticity, and learning disorders.
- Adult onset form of the disease is classified by its occurrence in older individuals and has an effect on the motor function of these individuals. It is not yet known if Sandhoff disease will cause these individuals to have a decrease in their life span.
Juvenile and adult onset forms of Sandhoff disease are very rare. Signs and symptoms can begin in childhood, adolescence, or adulthood and are usually milder than those seen with the infantile form of Sandhoff disease. As in the infantile form, mental abilities and coordination are affected. Characteristic features include muscle weakness, loss of muscle coordination (ataxia) and other problems with movement, speech problems, and mental illness. These signs and symptoms vary widely among people with late-onset forms of Sandhoff disease.
Sandhoff disease can be detected through the following procedures (before it is apparent through physical examination): a biopsy removing a sample of tissue from the liver, genetic testing, molecular analysis of cells and tissues (to determine the presence of a genetic metabolic disorder), enzyme assay, and occasionally a urinalysis to determine if the above-noted compounds are abnormally stored within the body. For a child to suffer from this disease, both parents must be carriers, and both must transmit the mutation to the child. Thus, even in the case where both parents have the mutation, there is only a 25 percent chance their child will inherit the condition. Frequently, parents are given the opportunity to have a DNA screening if they are at high risk, to determine their carrier status before they have children. However, it is also highly recommended to undergo testing even for those parents who do not have a family history of Sandhoff disease. Over 95% of the families that have children with Sandhoff disease had no known prior family history of the condition, as the mutation in the HEXB gene is "silent," or recessive, and often passed undetected from one generation to the next Naturally, if an individual carries the mutation, he or she has a risk of transmitting it to the unborn child. Genetic counseling is recommended for those who have the mutation.
The most well known laboratory to perform the blood tests is through Lysosomal Diseases Testing Laboratory, Jefferson University with Dr. Wenger. Dr. Wenger’s laboratory does testing for all lysosomal diseases including Sandhoff and Tay-Sachs. They test for build-up of certain toxins in the body as well as a low count of enzymes.
It is possible for parents who are about to have a child or had a child with Sandhoff Disease can have a PGD or PEGD. PEGD is pre-embryonic genetic diagnosis for the parents that would not benefit from a pre-implantation genetic diagnosis because of their religion or negative attitude for the discarding of embryos. PEGD sequences the genome of the embryo to be produced by two parents if they were to conceive a child. If the family has a history of Sandhoff disease it is recommended they have their genome sequenced to ensure they are not carriers or to sequence the genome of their child.
Urbach–Wiethe disease is typically not a life-threatening condition. The life expectancy of these patients is normal as long as the potential side effects of thickening mucosa, such as respiratory obstruction, are properly addressed. Although this may require a tracheostomy or carbon dioxide laser surgery, such steps can help ensure that individuals with Urbach–Wiethe disease are able to live a full life. Oral dimethyl sulfoxide (DMSO) has been shown to reduce skin lesions, helping to minimize discomfort for these individuals.
The treatment to battle the disease chorea-acanthocytosis is completely symptomatic. For example, Botulinum toxin injections can help to control orolingual dystonia.
Deep Brain Stimulation is a treatment that has varied effects on the people suffering from the symptoms of this disease, for some it has helped in a large way and for other people it did not help whatsoever, it is more effective on specific symptoms of the disease. Patients with chorea-acanthocytosis should undergo a cardiac evaluation every 5 years to look for cardiomyopathy.
It is done through isolation of a bacteria from chickens suspected to have history of coryza and clinical finds from infected chickens also is used in the disease diagnosis. Polymerase chain reaction is a reliable means of diagnosis of the disease