Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The influenza vaccine is recommended by the World Health Organization and United States Centers for Disease Control and Prevention for high-risk groups, such as children, the elderly, health care workers, and people who have chronic illnesses such as asthma, diabetes, heart disease, or are immuno-compromised among others. In healthy adults it is modestly effective in decreasing the amount of influenza-like symptoms in a population. Evidence is supportive of a decreased rate of influenza in children over the age of two. In those with chronic obstructive pulmonary disease vaccination reduces exacerbations, it is not clear if it reduces asthma exacerbations. Evidence supports a lower rate of influenza-like illness in many groups who are immunocompromised such as those with: HIV/AIDS, cancer, and post organ transplant. In those at high risk immunization may reduce the risk of heart disease. Whether immunizing health care workers affects patient outcomes is controversial with some reviews finding insufficient evidence and others finding tentative evidence.
Due to the high mutation rate of the virus, a particular influenza vaccine usually confers protection for no more than a few years. Every year, the World Health Organization predicts which strains of the virus are most likely to be circulating in the next year (see Historical annual reformulations of the influenza vaccine), allowing pharmaceutical companies to develop vaccines that will provide the best immunity against these strains. The vaccine is reformulated each season for a few specific flu strains but does not include all the strains active in the world during that season. It takes about six months for the manufacturers to formulate and produce the millions of doses required to deal with the seasonal epidemics; occasionally, a new or overlooked strain becomes prominent during that time. It is also possible to get infected just before vaccination and get sick with the strain that the vaccine is supposed to prevent, as the vaccine takes about two weeks to become effective.
Vaccines can cause the immune system to react as if the body were actually being infected, and general infection symptoms (many cold and flu symptoms are just general infection symptoms) can appear, though these symptoms are usually not as severe or long-lasting as influenza. The most dangerous adverse effect is a severe allergic reaction to either the virus material itself or residues from the hen eggs used to grow the influenza; however, these reactions are extremely rare.
The cost-effectiveness of seasonal influenza vaccination has been widely evaluated for different groups and in different settings. It has generally been found to be a cost-effective intervention, especially in children and the elderly, however the results of economic evaluations of influenza vaccination have often been found to be dependent on key assumptions.
The CDC recommends real-time PCR as the method of choice for diagnosing H1N1. The oral or nasal fluid collection and RNA virus preserving filter paper card is commercially available. This method allows a specific diagnosis of novel influenza (H1N1) as opposed to seasonal influenza. Near-patient point-of-care tests are in development.
Reasonably effective ways to reduce the transmission of influenza include good personal health and hygiene habits such as: not touching your eyes, nose or mouth; frequent hand washing (with soap and water, or with alcohol-based hand rubs); covering coughs and sneezes; avoiding close contact with sick people; and staying home yourself if you are sick. Avoiding spitting is also recommended. Although face masks might help prevent transmission when caring for the sick, there is mixed evidence on beneficial effects in the community. Smoking raises the risk of contracting influenza, as well as producing more severe disease symptoms.
Since influenza spreads through both aerosols and contact with contaminated surfaces, surface sanitizing may help prevent some infections. Alcohol is an effective sanitizer against influenza viruses, while quaternary ammonium compounds can be used with alcohol so that the sanitizing effect lasts for longer. In hospitals, quaternary ammonium compounds and bleach are used to sanitize rooms or equipment that have been occupied by patients with influenza symptoms. At home, this can be done effectively with a diluted chlorine bleach.
Social distancing strategies used during past pandemics, such as closing schools, churches and theaters, slowed the spread of the virus but did not have a large effect on the overall death rate. It is uncertain if reducing public gatherings, by for example closing schools and workplaces, will reduce transmission since people with influenza may just be moved from one area to another; such measures would also be difficult to enforce and might be unpopular. When small numbers of people are infected, isolating the sick might reduce the risk of transmission.
Prevention of swine influenza has three components: prevention in pigs, prevention of transmission to humans, and prevention of its spread among humans.
In June 2009, the United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) approved the first canine influenza vaccine. This vaccine must be given twice initially with a two-week break, then annually thereafter.
The presence of an upper respiratory tract infection in a dog that has been vaccinated for the other major causes of kennel cough increases suspicion of infection with canine influenza, especially in areas where the disease has been documented. A serum sample from a dog suspected of having canine influenza can be submitted to a laboratory that performs PCR tests for this virus.
There is no vaccine for SARS to date. Isolation and quarantine remain the most effective means to prevent the spread of SARS. Other preventative measures include:
- Handwashing
- Disinfection of surfaces for fomites
- Wearing a surgical mask
- Avoiding contact with bodily fluids
- Washing the personal items of someone with SARS in hot, soapy water (eating utensils, dishes, bedding, etc.)
- Keeping children with symptoms home from school
Many public health interventions were taken to help control the spread of the disease; which is mainly spread through respiratory droplets in the air. These interventions included earlier detection of the disease, isolation of people who are infected, droplet and contact precautions, and the use of personal protective equipment (PPE); including masks and isolation gowns. A screening process was also put in place at airports to monitor air travel to and from affected countries. Although no cases have been identified since 2004, the CDC is still working to make federal and local rapid response guidelines and recommendations in the event of a reappearance of the virus.
Antigen detection, polymerase chain reaction assay, virus isolation, and serology can be used to identify adenovirus infections. Adenovirus typing is usually accomplished by hemagglutination-inhibition and/or neutralization with type-specific antisera. Since adenovirus can be excreted for prolonged periods, the presence of virus does not necessarily mean it is associated with disease.
Several consequent reports from China on some recovered SARS patients showed severe long-time sequelae exist. The most typical diseases include, among other things, pulmonary fibrosis, osteoporosis, and femoral necrosis, which have led to the complete loss of working ability or even self-care ability of these cases. As a result of quarantine procedures, some of the post-SARS patients have been documented suffering from posttraumatic stress disorder (PTSD) and major depressive disorder.
If a person with ILI also has either a history of exposure or an occupational or environmental risk of exposure to "Bacillus anthracis" (anthrax), then a differential diagnosis requires distinguishing between ILI and anthrax. Other rare causes of ILI include leukemia and metal fume fever.
Safe and effective adenovirus vaccines were developed for adenovirus serotypes 4 and 7, but were available only for preventing ARD among US military recruits, and production stopped in 1996. Strict attention to good infection-control practices is effective for stopping transmission in hospitals of adenovirus-associated disease, such as epidemic keratoconjunctivitis. Maintaining adequate levels of chlorination is necessary for preventing swimming pool-associated outbreaks of adenovirus conjunctivitis.
Technically, any clinical diagnosis of influenza is a diagnosis of ILI, not of influenza. This distinction usually is of no great concern because, regardless of cause, most cases of ILI are mild and self-limiting. Furthermore, except perhaps during the peak of a major outbreak of influenza, most cases of ILI are not due to influenza. ILI is very common: in the United States each adult can average 1–3 episodes per year and each child can average 3–6 episodes per year.
Influenza in humans is subject to clinical surveillance by a global network of more than 110 National Influenza Centers. These centers receive samples obtained from patients diagnosed with ILI, and test the samples for the presence of an influenza virus. Not all patients diagnosed with ILI are tested, and not all test results are reported. Samples are selected for testing based on severity of ILI, and as part of routine sampling, and at participating surveillance clinics and laboratories. The United States has a general surveillance program, a border surveillance program, and a hospital surveillance program, all devoted to finding new outbreaks of influenza.
In most years, in the majority of samples tested, the influenza virus is not present (see figure). In the United States during the 2008–9 influenza season through 18 April, out of 183,839 samples tested and reported to the CDC, only 25,925 (14.1%) were positive for influenza. The percent positive reached a maximum of about 25%. The percent positive increases with the incidence of infection, peaking with the peak incidence of influenza (see figure). During an epidemic, 60–70% of patients with a clear influenza-like illness actually have influenza.
Samples are respiratory samples, usually collected by a physician, nurse, or assistant, and sent to a hospital laboratory for preliminary testing. There are several methods of collecting a respiratory sample, depending on requirements of the laboratory that will test the sample. A sample may be obtained from around the nose simply by wiping with a dry cotton swab.
Initial response to H5N1, a one size fits all recommendation was used for all poultry production systems, though measures for intensively raised birds were not necessarily appropriate for extensively raised birds. When looking at village poultry, it was first assumed that the household was the unit and that flocks did not make contact with other flocks, though more effective measures came into use when the epidemiological unit was the village.
Recommendations also involve restructuring commercial markets to improve biosecurity against avian influenza. Poultry production zoning is used to limit poultry farming to specific areas outside of urban environments while live poultry markets improve biosecurity by limiting the number of traders holding licenses and subjecting producers and traders to more stringent inspections. These recommendations in combination with requirements to fence and house all poultry, and limit free ranging flocks will eventually lead to fewer small commercial producers and backyard producers, costing livelihoods as they are unable to meet the conditions needed to participate.
A summary of reports to the World Organisation for Animal Health in 2005 and 2010 suggest that surveillance and under-reporting in developed and developing countries is still a challenge. Often, donor support can focus on HPAI control alone, while similar diseases such as Newcastle disease, acute fowl cholera, infectious laryngotracheitis, and infectious bursal disease still affect poultry populations. When HPAI tests come back negative, a lack of funded testing for differential diagnoses can leave farmers wondering what killed their birds.
Since traditional production systems require little investment and serve as a safety net for lower income households, prevention and treatment can be seen as less cost effective than letting a few birds die. Effective control not only requires prior agreements to be made with relevant government agencies, such as seen with Indonesia, they must also not unduly threaten food security.
Prevention and control programs must take into account local understandings of people-poultry relations. In the past, programs that have focused on singular, place-based understandings of disease transmission have been ineffective. In the case of Northern Vietnam, health workers saw poultry as commodities with an environment that was under the control of people. Poultry existed in the context of farms, markets, slaughterhouses, and roads while humans were indirectly the primary transmitters of avian flu, placing the burden of disease control on people. However, farmers saw their free ranging poultry in an environment dominated by nonhuman forces that they could not exert control over. There were a host of nonhuman actors such as wild birds and weather patterns whose relationships with the poultry fostered the disease and absolved farmers of complete responsibility for disease control.
Attempts at singular, place-based controls sought to teach farmers to identify areas where their behavior could change without looking at poultry behaviors. Behavior recommendations by Vietnam's National Steering Committee for Avian Influenza Control and Prevention (NSCAI) were drawn from the FAO Principles of Biosecurity. These included restrictions from entering areas where poultry are kept by erecting barriers to segregate poultry from non-human contact, limits on human movement of poultry and poultry-related products ideally to transporters, and recommendations for farmers to wash hands and footwear before and after contact with poultry. Farmers, pointed to wind and environmental pollution as reasons poultry would get sick. NSCAI recommendations also would disrupt longstanding livestock production practices as gates impede sales by restricting assessment of birds by appearance and offend customers by limiting outside human contact. Instead of incorporating local knowledge into recommendations, cultural barriers were used as scapegoats for failed interventions. Prevention and control methods have been more effective when also considering the social, political, and ecological agents in play.
An oral whole cell nontypeable Haemophilus influenzae vaccine may protect against the disease, but "the evidence is mixed".
Pontiac fever is known to have a short incubation period of 1 to 3 days. No fatalities have been reported and cases resolve spontaneously without treatment. It is often not reported. Age, gender, and smoking do not seem to be risk factors. Pontiac fever seems to affect young people in the age medians of 29, 30, and 32. Pathogenesis of the Pontiac fever is poorly known.
A blood test is the only way to confirm a case of Ross River Fever. Several types of blood tests may be used to examine antibody levels in the blood. Tests may either look for simply elevated antibodies (which indicate some sort of infection), or specific antibodies to the virus.
Pontiac fever does not spread from person to person. It is acquired through aersolization of water droplets and/or potting soil containing "Legionella" bacteria.
A physical examination will often reveal decreased intensity of breath sounds, wheezing, rhonchi, and prolonged expiration. Most physicians rely on the presence of a persistent dry or wet cough as evidence of bronchitis.
A variety of tests may be performed in patients presenting with cough and shortness of breath:
- A chest X-ray is useful to exclude pneumonia which is more common in those with a fever, fast heart rate, fast respiratory rate, or who are old.
- A sputum sample showing neutrophil granulocytes (inflammatory white blood cells) and culture showing that has pathogenic microorganisms such as "Streptococcus" species.
- A blood test would indicate inflammation (as indicated by a raised white blood cell count and elevated C-reactive protein).
Post-viral cough can be resistant to treatment. Post-viral cough usually goes away on its own; however, cough suppressants containing codeine may be prescribed. A study has claimed theobromine in dark chocolate is more effective.
Antiviral drugs, that target infections with RRV. Patients are usually managed with simple analgesics, anti-inflammatories, anti-pyretics and rest while the illness runs its course.
Pneumococcal pneumonia is a type of bacterial pneumonia that is specifically caused by Streptococcus pneumoniae. "S. pneumoniae" is also called pneumococcus. It is the most common bacterial pneumonia found in adults. The estimated number of Americans with pneumococcal pneumonia is 900,000 annually, with almost 400,000 cases hospitalized and fatalities accounting for 5-7% of these cases.
The symptoms of pneumococcal pneumonia can occur suddenly, typically presenting as a severe chill, later including a severe fever, cough, shortness of breath, rapid breathing, and chest pains. Other symptoms like nausea, vomiting, headache, fatigue, and muscle aches could also accompany the original symptoms. Sometimes the coughing can produce rusty or blood-streaked sputum. In 25% of cases, a parapneumonic effusion may occur. Chest X-rays will typically show lobar consolidation or patchy infiltrates.
In most cases, once pneumococcal pneumonia has been identified, doctors will prescribe antibiotics. These antibiotic usually help alleviate and eliminate symptoms between 12 and 36 hours after being taken. Despite most antibiotics' effectiveness in treating the disease, sometimes the bacteria can resist the antibiotics, causing symptoms to worsen. Additionally, age and health of the infected patient can contribute to the effectiveness of the antibiotics. A vaccine has also been developed for the prevention of pneumococcal pneumonia, recommended to children under age five as well as adults over the age of 65.
While it has been commonly known that the influenza virus increases one's chances of contracting pneumonia or meningitis caused by the streptococcus pneumonaie bacteria, new medical research in mice indicates that the flu is actually a necessary component for the transmission of the disease. Researcher Dimitri Diavatopoulo from the Radboud University Nijmegen Medical Centre in the Netherlands describes his observations in mice, stating that in these animals, the spread of the bacteria only occurs between animals already infected with the influenza virus, not between those without it. He says that these findings have only been inclusive in mice, however, he believes that the same could be true for humans.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Doxycycline and minocycline are the medications of choice. For people allergic to antibiotics of the tetracycline class, rifampin is an alternative. Early clinical experience suggested that chloramphenicol may also be effective, however, in vitro susceptibility testing revealed resistance.
No human vaccine is available for ehrlichiosis. Tick control is the main preventive measure against the disease. However, in late 2012 a breakthrough in the prevention of CME (canine monocytic ehrlichiosis) was announced when a vaccine was accidentally discovered by Prof. Shimon Harrus, Dean of the Hebrew University of Jerusalem's Koret School of Veterinary Medicine.