Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Examination of blood samples will allow identification of microfilariae of "M. perstans", and "M. ozzardi" based. This diagnosis can be made on the basis of the morphology of the nuclei distribution in the tails of the microfilariae. The blood sample can be a thick smear, stained with Giemsa or hematoxylin and eosin. For increased sensitivity, concentration techniques can be used. These include centrifugation of the blood sample lyzed in 2% formalin (Knott's technique), or filtration through a Nucleopore membrane.
Examination of skin snips will identify microfilariae of "Onchocerca volvulus" and "M. streptocerca". Skin snips can be obtained using a corneal-scleral punch, or more simply a scalpel and needle. It is important that the sample be allowed to incubate for 30 minutes to 2 hours in saline or culture medium and then examined. This allows for the microfilariae that would have been in the tissue to migrate to the liquid phase of the specimen. Additionally, to differentiate the skin-dwelling filariae "M. streptocerca" and "Onchocerca volvulus", a nested polymerase chain reaction (PCR) assay was developed using small amounts of parasite material present in skin biopsies.
Identification of microfilariae by microscopic examination is a practical diagnostic procedure. Examination of blood samples will allow identification of microfilariae of "Loa loa". It is important to time the blood collection with the known periodicity of the microfilariae (between 10 am and 2 pm). The blood sample can be a thick smear, stained with Giemsa or haematoxylin and eosin (see staining). For increased sensitivity, concentration techniques can be used. These include centrifugation of the blood sample lyzed in 2% formalin (Knott's technique), or filtration through a Nucleopore membrane.
Antigen detection using an immunoassay for circulating filarial antigens constitutes a useful diagnostic approach, because microfilaremia can be low and variable. Interestingly, the Institute for Tropical Medicine reports that no serologic diagnostics are available. While this was once true, and many of recently developed methods of Antibody detection are of limited value—because substantial antigenic cross reactivity exists between filaria and other parasitic worms (helminths), and a positive serologic test does not necessarily distinguish between infections—up and coming serologic tests that are highly specific to "Loa loa" were furthered in 2008. They have not gone point-of-care yet, but show promise for highlighting high-risk areas and individuals with co-endemic loiasis and onchocerciasis. Specifically, Dr. Thomas Nutman and colleagues at the National Institutes of Health have described the a luciferase immunoprecipitation assay (LIPS) and the related QLIPS (quick version). Whereas a previously described LISXP-1 ELISA test had a poor sensitivity (55%), the QLIPS test is both practical, as it requires only a 15 minutes incubation, and has high sensitivity and specificity (97% and 100%, respectively). No report on the distribution status of LIPS or QLIPS testing is available, but these tests would help to limit complications derived from mass ivermectin treatment for onchocerciasis or dangerous strong doses of diethylcarbamazine for loiasis alone (as pertains to individual with high "Loa loa" microfilarial loads).
Physically, Calabar swellings (see image; needs image) are the primary tool for diagnosis. Identification of adult worms is possible from tissue samples collected during subcutaneous biopsies. Adult worms migrating across the eye are another potential diagnostic, but the short timeframe for the worm's passage through the conjunctiva makes this observation less common.
In the past, health care providers use a provocative injection of "Dirofilaria immitis" as a skin test antigen for filariasis diagnosis. If the patient was infected, the extract would cause an artificial allergic reaction and associated Calabar swelling similar to that caused, in theory, by metabolic products of the worm or dead worms.
Blood tests to reveal microfilaremia are useful in many, but not all cases, as one third of loiasis patients are amicrofilaremic. By contrast, eosinophilia is almost guaranteed in cases of loiasis, and blood testing for eosinophil fraction may be useful.
Tender or enlarged inguinal lymph nodes or swelling in the extremities can alert physicians or public health officials to infection.
With appropriate laboratory equipment, microscopic examination of differential morphological features of microfilariae in stained blood films can aid diagnosis—in particular the examination of the tail portion, the presence of a sheath, and the size of the cephalic space. Giemsa staining will uniquely stain "B. malayi" sheath pink. However, blood films can prove difficult given the nocturnal periodicity of some forms of "B. malayi".
PCR based assays are highly sensitive and can be used to monitor infections both in the human and the mosquito vector. However, PCR assays are time-consuming, labor-intensive and require laboratory equipment. Lymphatic filariasis mainly affects the poor, who live in areas without such resources.
The ICT antigen card test is widely used in the diagnosis of "W. bancrofti", but commercial antigens of "B. malayi" have not been historically widely available. However, new research developments have identified a recombinant antigen (BmR1) that is both specific and sensitive in the detection of IgG4 antibodies against "B. malayi" and "B. timori" in ELISA and immunochromatographic rapid dipstick (Brugia Rapid) test. However, it appears that immunoreactivity to this antigen is variable in individuals infected with other filarial nematodes. This research has led to the development of two new rapid immunochromatographic IgG4 cassette tests – WB rapid and panLF rapid – which detect bancroftian filariasis and all three species of lymphatic filariasis, respectively, with high sensitivity and selectivity.
The standard method for diagnosing active infection is by finding the microfilariae via microscopic examination. This may be difficult, as in most parts of the world, microfilariae only circulate in the blood at night. For this reason, the blood has to be collected nocturnally. The blood sample is typically in the form of a thick smear and stained with Giemsa stain. Testing the blood serum for antibodies against the disease may also be used.
Various concentration methods are applied: membrane filter, Knott's concentration method, and sedimentation technique.
Polymerase chain reaction (PCR) and antigenic assays, which detect circulating filarial antigens, are also available for making the diagnosis. The latter are particularly useful in amicrofilaraemic cases. Spot tests for antigen are far more sensitive, and allow the test to be done anytime, rather in the late hours.
Lymph node aspirate and chylous fluid may also yield microfilariae. Medical imaging, such as CT or MRI, may reveal "filarial dance sign" in the chylous fluid; X-ray tests can show calcified adult worms in lymphatics. The DEC provocation test is performed to obtain satisfying numbers of parasites in daytime samples. Xenodiagnosis is now obsolete, and eosinophilia is a nonspecific primary sign.
Filariasis is usually diagnosed by identifying microfilariae on Giemsa stained, thin and thick blood film smears, using the "gold standard" known as the finger prick test. The finger prick test draws blood from the capillaries of the finger tip; larger veins can be used for blood extraction, but strict windows of the time of day must be observed. Blood must be drawn at appropriate times, which reflect the feeding activities of the vector insects. Examples are "W. bancrofti", whose vector is a mosquito; night is the preferred time for blood collection. "Loa loa's" vector is the deer fly; daytime collection is preferred. This method of diagnosis is only relevant to microfilariae that use the blood as transport from the lungs to the skin. Some filarial worms, such as "M. streptocerca" and "O. volvulus", produce microfilarae that do not use the blood; they reside in the skin only. For these worms, diagnosis relies upon skin snips and can be carried out at any time.
A blood smear is a simple and fairly accurate diagnostic tool, provided the blood sample is taken during the period in the day when the juveniles are in the peripheral circulation. Technicians analyzing the blood smear must be able to distinguish between "W. bancrofti" and other parasites potentially present.
A polymerase chain reaction test can also be performed to detect a minute fraction, as little as 1 pg, of filarial DNA.
Some infected people do not have microfilariae in their blood. As a result, tests aimed to detect antigens from adult worms can be used.
Ultrasonography can also be used to detect the movements and noises caused by the movement of adult worms.
Dead, calcified worms can be detected by X-ray examinations.
Diethylcarbamazine has been shown as an effective prophylaxis for "Loa loa" infection.
A study of Peace Corps volunteers in the highly Loa—endemic Gabon, for example, had the following results: 6 of 20 individuals in a placebo group contracted the disease, compared to 0 of 16 in the DEC-treated group. Seropositivity for antifilarial IgG antibody was also much higher in the placebo group. The recommended prophylactic dose is 300 mg DEC given orally once weekly. The only associated symptom in the Peace Corps study was nausea.
Researchers believe that geo-mapping of appropriate habitat and human settlement patterns may, with the use of predictor variables such as forest, land cover, rainfall, temperature, and soil type, allow for estimation of Loa loa transmission in the absence of point-of-care diagnostic tests. In addition to geo-mapping and chemoprophylaxis, the same preventative strategies used for malaria should be undertaken to avoid contraction of loiasis. Specifically, DEET-containing insect repellent, permethrin-soaked clothing, and thick, long-sleeved and long-legged clothing ought to be worn to decrease susceptibility to the bite of the mango or deer fly vector. Because the vector is day-biting, mosquito (bed) nets do not increase protection against loiasis.
Vector elimination strategies are an interesting consideration. It has been shown that the "Chrysops" vector has a limited flying range, but vector elimination efforts are not common, likely because the insects bite outdoors and have a diverse, if not long, range, living in the forest and biting in the open, as mentioned in the vector section.
No vaccine has been developed for loiasis and there is little report on this possibility.
The World Health Organization recommends mass deworming—treating entire groups of people who are at risk with a single annual dose of two medicines, namely albendazole in combination with either ivermectin or diethylcarbamazine citrate. With consistent treatment, since the disease needs a human host, the reduction of microfilariae means the disease will not be transmitted, the adult worms will die out, and the cycle will be broken. In sub-Saharan Africa, albendazole (donated by GlaxoSmithKline) is being used with ivermectin (donated by Merck & Co.) to treat the disease, whereas elsewhere in the world, albendazole is used with diethylcarbamazine. Transmission of the infection can be broken when a single dose of these combined oral medicines is consistently maintained annually for a duration of four to six years. Using a combination of treatments better reduces the number of microfilariae in blood. Avoiding mosquito bites, such as by using insecticide-treated mosquito bed nets, also reduces the transmission of lymphatic filariasis.
The Carter Center's International Task Force for Disease Eradication declared lymphatic filariasis one of six potentially eradicable diseases. According to medical experts, the worldwide effort to eliminate lymphatic filariasis is on track to potentially succeed by 2020.
For similar-looking but causally unrelated podoconiosis, international awareness of the disease will have to increase before elimination is possible. In 2011, podoconiosis was added to the World Health Organization's Neglected Tropical Diseases list, which was an important milestone in raising global awareness of the condition.
The efforts of the Global Programme to Eliminate LF are estimated to have prevented 6.6 million new filariasis cases from developing in children between 2000 and 2007, and to have stopped the progression of the disease in another 9.5 million people who had already contracted it. Dr. Mwele Malecela, who chairs the programme, said: "We are on track to accomplish our goal of elimination by 2020." In 2010, the WHO published a detailed progress report on the elimination campaign in which they assert that of the 81 countries with endemic LF, 53 have implemented mass drug administration, and 37 have completed five or more rounds in some areas, though urban areas remain problematic.
Prevention can be partially achieved through limiting contact with vectors through the use of DEET and other repellents, but due to the predominantly relatively mild symptoms and the infection being generally asymptomatic, little has formally been done to control the disease.
Generally speaking, acanthocheilonemiasis does not show initial symptoms. However, if symptoms do arise, it is typically in individuals who are visiting highly infected areas rather than natives to those areas. A major common laboratory finding is an increase in specialized white blood cells, which is called eosinophilia.
Other symptoms include itchy skin, neurological symptoms, abdominal and chest pain, muscle pain, and swelling underneath the skin. If there are abnormally high levels of white blood cells, then a physical examination will most likely find an enlarged spleen or liver.
In certain scenarios, nematodes may physically lodge into the chest or abdomen, resulting in an inflammation. Diagnosis of this condition usually occurs via a blood smear examination under light microscopy.
The Global Alliance to Eliminate Lymphatic Filariasis was launched by the World Health Organization in 2000 with two primary goals: 1) to interrupt transmission and 2) to alleviate the suffering of affected individuals. Mass drug treatment programs are the main strategy for interrupting parasite transmission, and morbidity management, focusing on hygiene, improves the quality of life of infected individuals.
The diagnostic criteria for tropical pulmonary eosinophilia include:
- a history supportive of exposure to lymphatic filariasis;
- a peripheral eosinophilia count greater than 3 × 10/L);
- an elevated serum IgE levels (> 1000 kU/L);
- increased titers of antifilarial antibodies;
- peripheral blood negative for microfilariae; and
- a clinical response to diethylcarbamazine.
High antifilarial IgG titers to microfilariae often result in cross reactivity with other nonfilarial helminth antigens, such as strongyloides and schistosoma antigens, as demonstrated in reported cases. It is important to exclude other parasitic infections before tropical pulmonary eosinophilia is diagnosed, by serological tests, examination of stool specimens in a laboratory experienced in parasitic infections, or a trial of anthelminthic medication. Other parasitic infections, such as the zoonotic filariae, dirofilariasis, ascariasis, strongyloides, visceral larva migrans and hookworm disease, may also be confused with tropical pulmonary eosinophilia because of overlapping clinical features, serological profile and response to diethylcarbamazine. Radiological findings are nonspecific, with normal appearance on chest X-ray in up to 20% of patients. Lung biopsy is not part of the routine diagnostic workup of tropical pulmonary eosinophilia.
Prevention focuses on protecting against mosquito bites in endemic regions. Insect repellents and mosquito nets are useful to protect against mosquito bites. Public education efforts must also be made within the endemic areas of the world to successfully lower the prevalence of "W. bancrofti" infections.
The standard of care is administration of antifilarial drugs, most commonly Ivermectin or diethyl-carbamazine (DEC). The most efficacious dose in all nematode and parasitic infections is 200 µg/kg of ivermectin. There has also been other various anthelminthic drugs used, such as mebendazole, levamisole, albendazole and thiabendazole. In worst-case scenarios, surgery may be necessary to remove nematodes from the abdomen or chest. However, mild cases usually do not require treatment.
Specific helminths can be identified through microscopic examination of their eggs (ova) found in faecal samples. The number of eggs is measured in units of eggs per gram. However, it does not quantify mixed infections, and in practice, is inaccurate for quantifying the eggs of schistosomes and soil-transmitted helmiths. Sophisticated tests such as serological assays, antigen tests, and molecular diagnosis are also available; however, they are time-consuming, expensive and not always reliable.
One way to diagnose "C. felis" is by taking blood and performing a peripheral blood smear to look for the erythrocytic piroplasms. The erythrocytic piroplasms are usually shaped like signet rings and are 1 to 1.5 µm. Not all cats that are infected will have the piroplasms on their blood smear, especially if they are early in disease course. Another method of diagnosing infection in sick cats is to take needle aspirates of affected organs and find the schizonts inside mononuclear cells in the tissues; examination of tissue is also useful for the diagnosis after cats have died. Blood samples can be sent away for polymerase chain reaction (PCR) testing to confirm infection. Other diseases that might resemble cytauxzoonosis should be ruled out. A major rule-out for "C. felis" is "Mycoplasma haemofelis" (formerly known as "Haemobartonella felis"); clinical signs can be similar to cytauxzoonosis and the organism may be confused on the peripheral smear. Because it causes similar signs in outdoor cats during the spring and summer, tularemia is another disease the veterinarian may want to rule out.
Other laboratory tests are often abnormal in sick cats. The CBC of an infected cat often shows a pancytopenia, or a decrease in red blood cells, white blood cells, and platelets; in some cases there is not a decrease in all three values. Clotting tests may be prolonged. Increased liver enzymes are common, and electrolyte disturbances, hyperglycemia, and acid-base disturbances can also be observed.
Various control programs aim to stop onchocerciasis from being a public health problem. The first was the Onchocerciasis Control Programme (OCP), which was launched in 1974, and at its peak, covered 30 million people in 11 countries. Through the use of larvicide spraying of fast-flowing rivers to control black fly populations, and from 1988 onwards, the use of ivermectin to treat infected people, the OCP eliminated onchocerciasis as a public health problem. The OCP, a joint effort of the World Health Organisation, the World Bank, the United Nations Development Programme, and the UN Food and Agriculture Organization, was considered to be a success, and came to an end in 2002. Continued monitoring ensures onchocerciasis cannot reinvade the area of the OCP.
In 1995, the African Programme for Onchocerciasis Control began covering another 19 countries, mainly relying upon the use of ivermectin. Its goal is to set up a community-directed supply of ivermectin for those who are infected. In these ways, transmission has declined. In 2015, WHO was facilitating launch of an elimination program in Yemen.
In 1992, the Onchocerciasis Elimination Programme for the Americas, which also relies on ivermectin, was launched. On July 29, 2013, the Pan American Health Organization (PAHO) announced that after 16 years of efforts, Colombia had become the first country in the world to eliminate the parasitic disease onchocerciasis. In September 2015, the Onchocerciasis Elimination Program for the Americas announced that onchocerciasis only remained in a remote region on the border of Brazil and Venezuela. The area is home to the Yanomami indigenous people. The first countries to receive verification of elimination were Colombia in 2013, Ecuador in 2014, and Mexico in 2015. Guatemala has submitted a request for verification. The key factor in elimination is mass administration of the antiparasitic drug ivermectin. The initial projection was that the disease would be eliminated from remaining foci in the Americas by 2012.
No vaccine to prevent onchocerciasis infection in humans is available. A vaccine to prevent onchocerciasis infection for cattle is in phase three trials. Cattle injected with a modified and weakened form of "O. ochengi" larvae have developed very high levels of protection against infection. The findings suggest that it could be possible to develop a vaccine that protects people against river blindness using a similar approach. Unfortunately, a vaccine to protect humans is still many years off.
Diagnosis depends on finding characteristic worm eggs on microscopic examination of the stools, although this is not possible in early infection. Early signs of infection in most dogs include limbular limping and anal itching. The eggs are oval or elliptical, measuring 60 µm by 40 µm, colorless, not bile stained and with a thin transparent hyaline shell membrane. When released by the worm in the intestine, the egg contains an unsegmented ovum. During its passage down the intestine, the ovum develops and thus the eggs passed in feces have a segmented ovum, usually with 4 to 8 blastomeres.
As the eggs of both "Ancylostoma" and "Necator" (and most other hookworm species) are indistinguishable, to identify the genus, they must be cultured in the lab to allow larvae to hatch out. If the fecal sample is left for a day or more under tropical conditions, the larvae will have hatched out, so eggs might no longer be evident. In such a case, it is essential to distinguish hookworms from "Strongyloides" larvae, as infection with the latter has more serious implications and requires different management. The larvae of the two hookworm species can also be distinguished microscopically, although this would not be done routinely, but usually for research purposes. Adult worms are rarely seen (except via endoscopy, surgery or autopsy), but if found, would allow definitive identification of the species. Classification can be performed based on the length of the buccal cavity, the space between the oral opening and the esophagus: hookworm rhabditoform larvae have long buccal cavities whereas "Strongyloides" rhabditoform larvae have short buccal cavities.
Recent research has focused on the development of DNA-based tools for diagnosis of infection, specific identification of hookworm, and analysis of genetic variability within hookworm populations. Because hookworm eggs are often indistinguishable from other parasitic eggs, PCR assays could serve as a molecular approach for accurate diagnosis of hookworm in the feces.
Evaluation of numerous public health interventions has generally shown that improvement in each individual component ordinarily attributed to poverty (for example, sanitation, health education and underlying nutrition status) often have minimal impact on transmission. For example, one study found that the introduction of latrines into a resource-limited community only reduced the prevalence of hookworm infection by four percent. However, another study in Salvador, Brazil found that improved drainage and sewerage had a significant impact (p<0.0001) on the prevalence of hookworm infection but no impact at all on the intensity of hookworm infection. This seems to suggest that environmental control alone has a limited but incomplete effect on the transmission of hookworms. It is imperative, therefore, that more research is performed to understand the efficacy and sustainability of integrated programs that combine numerous preventive methods including education, sanitation, and treatment.
In mass drug administration (MDA) programmes, the treatment for onchocerciasis is ivermectin (trade name: Mectizan); infected people can be treated with two doses of ivermectin, six months apart, repeated every three years. The drug paralyses and kills the microfilariae causing fever, itching, and possibly oedema, arthritis and lymphadenopathy. Intense skin itching is eventually relieved, and the progression towards blindness is halted. In addition, while the drug does not kill the adult worms, it does prevent them for a limited time from producing additional offspring. The drug therefore prevents both morbidity and transmission for up to several months.
Ivermectin treatment is particularly effective because it only needs to be taken once or twice a year, needs no refrigeration, and has a wide margin of safety, with the result that it has been widely given by minimally trained community health workers.
Diagnosis is usually performed by submitting multiple stool samples for examination by a parasitologist in a procedure known as an ova and parasite examination. About 30% of children with "D. fragilis" infection exhibit peripheral blood eosinophilia.
A minimum of three stool specimens having been immediately fixed in polyvinyl alcohol fixative, sodium acetate-acetic acid-formalin fixative, or Schaudinn's fixative should be submitted, as the protozoan does not remain morphologically identifiable for long. All specimens, regardless of consistency, are permanently stained prior to microscopic examination with an oil immersion lens. The disease may remain cryptic due to the lack of a cyst stage if these recommendations are not followed.
The trophozoite forms have been recovered from formed stool, thus the need to perform the ova and parasite examination on specimens other than liquid or soft stools. DNA fragment analysis provides excellent sensitivity and specificity when compared to microscopy for the detection of "D. fragilis" and both methods should be employed in laboratories with PCR capability. The most sensitive detection method is parasite culture, and the culture medium requires the addition of rice starch.
An indirect fluorescent antibody (IFA) for fixed stool specimens has been developed.
1. One researcher investigated the phenomenon of symptomatic relapse following treatment of infection with "D. fragilis" in association with its apparent disappearance from stool samples. The organism could still be detected in patients through colonoscopy or by examining stool samples taken in conjunction with a saline laxative.
2. A study found that trichrome staining, a traditional method for identification, had a sensitivity of 36% (9/25) when compared to stool culture.
3. An additional study found that the sensitivity of staining was 50% (2/4), and that the organism could be successfully cultured in stool specimens up to 12-hours old that were kept at room temperature.
The following diagnostic methods are not routinely available to patients. Researchers have reported that they are more reliable at detecting infection, and in some cases can provide the physician with information to help determine whether "Blastocystis" infection is the cause of the patient's symptoms:
Serum antibody testing: A 1993 research study performed by the NIH with United States patients suggested that it was possible to distinguish symptomatic and asymptomatic infection with "Blastocystis" using serum antibody testing. The study used blood samples to measure the patient's immune reaction to chemicals present on the surface of the "Blastocystis" cell. It found that patients diagnosed with symptomatic "Blastocystis" infection exhibited a much higher immune response than controls who had "Blastocystis" infection but no symptoms. The study was repeated in 2003 at Ain Shams University in Egypt with Egyptian patients with equivalent results.
Fecal antibody testing: A 2003 study at Ain Shams University in Egypt indicated that patients symptomatically infected could be distinguished with a fecal antibody test. The study compared patients diagnosed with symptomatic "Blastocystis" infection to controls who had "Blastocystis" infection but no symptoms. In the group with symptoms, IgA antibodies to "Blastocystis" were detected in fecal specimens that were not present in the healthy control group.
Stool culture: Culturing has been shown to be a more reliable method of identifying infection. In 2006, researchers reported the ability to distinguish between disease causing and non-disease causing isolates of "Blastocystis" using stool culture. "Blastocystis" cultured from patients who were sick and diagnosed with "Blastocystis" infection produced large, highly adhesive amoeboid forms in culture. These cells were absent in "Blastocystis" cultures from healthy controls. Subsequent genetic analysis showed the "Blastocystis" from healthy controls was genetically distinct from that found in patients with symptoms. Protozoal culture is unavailable in most countries due to the cost and lack of trained staff able to perform protozoal culture.
Genetic analysis of isolates: Researchers have used techniques which allow the DNA of "Blastocystis" to be isolated from fecal specimens. This method has been reported to be more reliable at detecting "Blastocystis" in symptomatic patients than stool culture. This method also allows the species group of "Blastocystis" to be identified. Research is continuing into which species groups are associated with symptomatic (see Genetics and Symptoms) blastocystosis.
Immuno-fluorescence (IFA) stain: An IFA stain causes "Blastocystis" cells to glow when viewed under a microscope, making the diagnostic method more reliable. IFA stains are in use for Giardia and Cryptosporidium for both diagnostic purposes and water quality testing. A 1991 paper from the NIH described the laboratory development of one such stain. However, no company currently offers this stain commercially.
Diagnosis of toxoplasmosis in humans is made by biological, serological, histological, or molecular methods, or by some combination of the above. Toxoplasmosis can be difficult to distinguish from primary central nervous system lymphoma. It mimics several other infectious diseases so clinical signs are non-specific and are not sufficiently characteristic for a definite diagnosis. As a result, the diagnosis is made by a trial of therapy (pyrimethamine, sulfadiazine, and folinic acid (USAN: leucovorin)), if the drugs produce no effect clinically and no improvement on repeat imaging.
"T. gondii" may also be detected in blood, amniotic fluid, or cerebrospinal fluid by using polymerase chain reaction. "T. gondii" may exist in a host as an inactive cyst that would likely evade detection.
Serological testing can detect "T. gondii" antibodies in blood serum, using methods including the Sabin–Feldman dye test (DT), the indirect hemagglutination assay, the indirect fluorescent antibody assay (IFA), the direct agglutination test, the latex agglutination test (LAT), the enzyme-linked immunosorbent assay (ELISA), and the immunosorbent agglutination assay test (IAAT).
The most commonly used tests to measure IgG antibody are the DT, the ELISA, the IFA, and the modified direct agglutination test. IgG antibodies usually appear within a week or two of infection, peak within one to two months, then decline at various rates. "Toxoplasma" IgG antibodies generally persist for life, and therefore may be present in the bloodstream as a result of either current or previous infection.
To some extent, acute toxoplasmosis infections can be differentiated from chronic infections using an IgG avidity test, which is a variation on the ELISA. In the first response to infection, toxoplasma-specific IgG has a low affinity for the toxoplasma antigen; in the following weeks and month, IgG affinity for the antigen increases. Based on the IgG avidity test, if the IgG in the infected individual has a high affinity, it means that the infection began three to five months before testing. This is particularly useful in congenital infection, where pregnancy status and gestational age at time of infection determines treatment.
In contrast to IgG, IgM antibodies can be used to detect acute infection, but generally not chronic infection. The IgM antibodies appear sooner after infection than the IgG antibodies and disappear faster than IgG antibodies after recovery. In most cases, "T. gondii"-specific IgM antibodies can first be detected approximately a week after acquiring primary infection, and decrease within one to six months; 25% of those infected are negative for "T. gondii"-specific IgM within seven months. However, IgM may be detectable months or years after infection, during the chronic phase, and false positives for acute infection are possible. The most commonly used tests for the measurement of IgM antibody are double-sandwich IgM-ELISA, the IFA test, and the immunosorbent agglutination assay (IgM-ISAGA). Commercial test kits often have low specificity, and the reported results are frequently misinterpreted.
A Zika virus infection might be suspected if symptoms are present and an individual has traveled to an area with known Zika virus transmission. Zika virus can only be confirmed by a laboratory test of body fluids, such as urine or saliva, or by blood test.