Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chest radiography is the preferred means of initial diagnosis for hemothorax. Upright radiography is preferred but supine films may be taken when upright radiography is not feasible due to the clinical situation. Tube thoracostomy may be done prior to imaging when patients have sustained blunt or penetrating thoracic trauma and display unstable hemodynamics, have respiratory failure with absent or decreased breath sounds, show tracheal deviation, or have serious penetrating injuries. In upright radiography, hemothorax is suggested by blunting of the costophrenic angle or partial or complete opacification of the hemithorax, in which the lateral side of the chest appears bright and the lung appears pushed away toward the center; the air-filled lung normally appears as a dark space on radiographic film. In the case of a small hemothorax, several hundred milliliters of blood can be hidden by the diaphragm and abdominal viscera. In supine patients, signs of hemothorax may also be subtle on radiographic film, because the blood will layer in the pleural space, and can be seen as a haziness in one half of the thorax relative to the other side.
Ultrasonography is also used for detection of hemothorax and other pleural effusions, particularly in the critical care and trauma settings, because it provides rapid, reliable results in order to make a diagnosis in an emergency situation. Computed tomography (CT or CAT) scans can detect much smaller amounts of fluid than chest radiography, but computed tomography is not a primary method of diagnosis within the trauma setting, due to the time required for imaging, the requirement that a patient remain supine, and the need to transport a critically ill patient to the scanner.
Once a pleural effusion is diagnosed, its cause must be determined. Pleural fluid is drawn out of the pleural space in a process called thoracentesis, and it should be done in almost all patients who have pleural fluid that is at least 10 mm in thickness on CT, ultrasonography, or lateral decubitus X-ray and that is new or of uncertain etiology. In general, the only patients who do not require thoracentesis are those who have heart failure with symmetric pleural effusions and no chest pain or fever; in these patients, diuresis can be tried, and thoracentesis is avoided unless effusions persist for more than 3 days. In a thoracentesis, a needle is inserted through the back of the chest wall in the sixth, seventh, or eighth intercostal space on the midaxillary line, into the pleural space. The use of ultrasound to guide the procedure is now standard of care as it increases accuracy and decreases complications. After removal, the fluid may then be evaluated for:
1. Chemical composition including protein, lactate dehydrogenase (LDH), albumin, amylase, pH, and glucose
2. Gram stain and culture to identify possible bacterial infections
3. White and red blood cell counts and differential white blood cell counts
4. Cytopathology to identify cancer cells, but may also identify some infective organisms
5. Other tests as suggested by the clinical situation – lipids, fungal culture, viral culture, tuberculosis cultures, lupus cell prep, specific immunoglobulins
A pleural effusion appears as an area of whiteness on a standard posteroanterior chest X-ray. Normally, the space between the visceral pleura and the parietal pleura cannot be seen. A pleural effusion infiltrates the space between these layers. Because the pleural effusion has a density similar to water, it can be seen on radiographs. Since the effusion has greater density than the rest of the lung, it gravitates towards the lower portions of the pleural cavity. The pleural effusion behaves according to basic fluid dynamics, conforming to the shape of pleural space, which is determined by the lung and chest wall. If the pleural space contains both air and fluid, then an air-fluid level that is horizontal will be present, instead of conforming to the lung space. Chest radiographs in the lateral decubitus position (with the patient lying on the side of the pleural effusion) are more sensitive and can detect as little as 50 mL of fluid. At least 300 mL of fluid must be present before upright chest X-rays can detect a pleural effusion (e.g., blunted costophrenic angles).
Chest computed tomography is more accurate for diagnosis and may be obtained to better characterize the presence, size, and characteristics of a pleural effusion. Lung ultrasound, nearly as accurate as CT and more accurate than chest X-ray, is increasingly being used at the point of care to diagnose pleural effusions, with the advantage that it is a safe, dynamic, and repeatable imaging modality. To increase diagnostic accuracy of detection of pleural effusion sonographically, markers such as boomerang and VIP signs can be utilized.
A hemothorax is managed by removing the source of bleeding and by draining the blood already in the thoracic cavity. Blood in the cavity can be removed by inserting a drain (chest tube) in a procedure called a tube thoracostomy. Generally, the thoracostomy tube is placed between the ribs in the sixth or seventh intercostal space at the mid-axillary line. Usually the lung will expand and the bleeding will stop after a chest tube is inserted.
The blood in the chest can thicken as the clotting cascade is activated when the blood leaves the blood vessels and comes into contact with the pleural surface, injured lung or chest wall, or with the chest tube. As the blood thickens, it can clot in the pleural space (leading to a retained hemothorax) or within the chest tube, leading to chest tube clogging or occlusion. Chest tube clogging or occlusion can lead to worse outcomes as it prevents adequate drainage of the pleural space, contributing to the problem of retained hemothorax. In this case, patients can be hypoxic, short of breath, or in some cases, the retained hemothorax can become infected (empyema).
Retained hemothorax occurs when blood remains in the pleural space, and is a risk factor for the development of complications, including the accumulation of pus in the pleural space and fibrothorax. It is treated by inserting a second chest tube or by drainage by video-assisted thoracoscopy. Fibrolytic therapy has also been studied as a treatment.
When hemothorax is treated with a chest tube, it is important that it maintain its function so that the blood cannot clot in the chest or the tube. If clogging occurs, internal chest tube clearing can be performed using an open or closed technique. Manual manipulation, which may also be called milking, stripping, or tapping, of chest tubes is commonly performed to maintain an open tube, but no conclusive evidence has demonstrated that any of these techniques are more effective than the others, or that they improve chest tube drainage.
In some cases bleeding continues and surgery is necessary to stop the source of bleeding. For example, if the hemothorax was caused by aortic rupture in high energy trauma, surgical intervention is mandatory.
Fibrothorax is diffuse fibrosis of the pleural space surrounding the lungs. It can have several causes including hemothorax, pleural effusion and tuberculosis. It may also be induced by exposure to certain substances, as with asbestos-induced diffuse pleural fibrosis. Idiopathic fibrothorax may also occur.
In fibrothorax, scar tissue is formed around the visceral pleura following inflammation due to pleural effusion or other pathology. The scar tissue lies in a sheet between the pleura, then fuses with the parietal pleura and the chest wall. Over time, generally the course of years, the fibrotic scar tissue slowly tightens, which results in the contraction of the entire hemithorax, and leaves the ribs immobilized. Within the chest, the lung is compressed and unable to expand, making it vulnerable to collapse. At the microscopic level, the scar tissue is composed of collagen fibers deposited in a basket weave pattern. The treatment for fibrothorax is decortication, the surgical removal of the fibrous layer of scar tissue. However, since many of the diseases and conditions resulting in fibrothorax are treatable, prevention remains the preferred method of managing fibrothorax.