Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In order to ascertain if an individual has activated PI3K delta syndrome, usually one finds atypical levels of immunoglobulins. Methods to determine the condition are the following:
- Genetic testing
- Laboratory findings
- Symptoms exhibited
Patients exhibit increased susceptibility to bacterial and viral infections, especially from common serotype human papilloma virus, resulting in warts on the hands and feet starting in childhood. Myelokathexis refers to retention (kathexis) of neutrophils in the bone marrow (myelo). In addition, lymphocytes and IgG antibody levels (gammaglobulins) are often deficient.
The main candidates for testing are those with a close relative who has suffered an episode of MH or have been shown to be susceptible. The standard procedure is the "caffeine-halothane contracture test", CHCT. A muscle biopsy is carried out at an approved research center, under local anesthesia. The fresh biopsy is bathed in solutions containing caffeine or halothane and observed for contraction; under good conditions, the sensitivity is 97% and the specificity 78%. Negative biopsies are "not" definitive, so any patient who is suspected of MH by their medical history or that of blood relatives is generally treated with non-triggering anesthetics, even if the biopsy was negative. Some researchers advocate the use of the "calcium-induced calcium release" test in addition to the CHCT to make the test more specific.
Less invasive diagnostic techniques have been proposed. Intramuscular injection of halothane 6 vol% has been shown to result in higher than normal increases in local among patients with known malignant hyperthermia susceptibility. The sensitivity was 100% and specificity was 75%. For patients at similar risk to those in this study, this leads to a positive predictive value of 80% and negative predictive value of 100%. This method may provide a suitable alternative to more invasive techniques.
A 2002 study examined another possible metabolic test. In this test, intramuscular injection of caffeine was followed by local measurement of the ; those with known MH susceptibility had a significantly higher (63 versus 44 mmHg). The authors propose larger studies to assess the test's suitability for determining MH risk.
Infusions of immune globulin can reduce the frequency of bacterial infections, and G-CSF or GM-CSF therapy improves blood neutrophil counts.
As WHIM syndrome is a molecular disease arising from gain-of-function mutations in CXCR4, preclinical studies identified plerixafor, a specific CXCR4 antagonist, as a potential mechanism-based therapeutic for the disease. Two subsequent clinical trials involving a handful of patients with WHIM syndrome demonstrated that plerixafor could increase white blood cell counts and continues to be a promising targeted therapy.
A woman with spontaneous remission of her WHIM syndrome due to Chromothripsis in one of her blood stem cells has been identified.
In support of these studies, a 2014 phase I clinical trial treated 3 patients diagnosed with WHIM syndrome with plerixafor twice a day for 6 months. All three patients presented with multiple reoccurring infections before treatment and all had an increase in their white blood cell count post treatment. One patient (P3) had a decrease in his infections by 40% while the remaining 2 patients (P1 and P2) had no infections throughout the entirety of the treatment. Plerixafor may also proof to have anti-human papillomavirus (HPV) properties as all patients experienced a shrinkage or complete disappearance of their warts. While this treatment shows promise in treating neutropenia (decreased white blood cells), this trial showed no increase of immune globulins in the body. A phase III clinical trial has been approved to compare the infection prevention ability of plerixafor versus the current treatment of G-CSF in patients with WHIM.
Among the diagnostic tests that can be done in determining if an individual has complement deficiencies is:
- CH50 measurement
- Immunochemical methods/test
- C3 deficiency screening
- Mannose-binding lectin (lab study)
- Plasma levels/regulatory proteins (lab study)
In terms of the treatment for ativated PI3K delta syndrome, generally primary immunodeficiencies see the following used:
- Bacterial infection should be treated rapidly(with antibiotics)
- Antiviral therapy
- Modify lifestyle(exposure to pathogens need to be minimized)
Genetic testing is being performed in a limited fashion to determine susceptibility to MH. In people with a family history of MH, analysis for "RYR1" mutations may be useful.
A genetic predisposition is a genetic characteristic which influences the possible phenotypic development of an individual organism within a species or population under the influence of environmental conditions. In medicine, genetic susceptibility to a disease refers to a genetic predisposition to a health problem, which may eventually be triggered by particular environmental or lifestyle factors, such as tobacco smoking or diet. Genetic testing is able to identify individuals who are genetically predisposed to certain diseases.
A diagnosis is made by measuring the enzymatic activity of alpha--mannosidase in white blood cells. If there is a decreased level of the enzyme in comparison to standard levels, a diagnosis can be made. It is thought that this disorder might be under-diagnosed for a few different reasons—the diagnosis is often made late in the disease's progression, symptoms are often mild, or the biochemical diagnosis does not yield conclusive results.
Diagnosis
Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia.
The clinical presentation of NEMO deficiency is determined by three main symptoms:
1. Susceptibility to pyogenic infections in the form of severe local inflammation
2. Susceptibility to mycobacterial infection
3. Symptoms of Ectodermal Dysplasia
To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.
Commonly Associated Diseases
NEMO deficiency syndrome may present itself as Incontinentia pigmenti or Ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.
Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as Incontinetia Pigmenti (IP). Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of Incontinetia Pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene.
Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of Anhidrotic ectodermal dysplasia with Immunodeficiency (EDA-IP). The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.
Treatment
The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.
In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor.
The life expectancy in alpha-mannosidosis is highly variable. Individuals with early onset severe disease often do not survive beyond childhood, whereas those with milder disorders may survive well into adult life.
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.
The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls.
There are several potential risk factors or causes to this increased risk:
- An increased immune tolerance in pregnancy to prevent an immune reaction against the fetus
- Maternal physiological changes including a decrease in respiratory volumes and urinary stasis due to an enlarging uterus.
- The presence of a placenta for pathogens to use as a habitat, such as by "L. monocytogenes" and "P. falciparum".
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Pregnant women are more severely affected by influenza, hepatitis E, herpes simplex and malaria. The evidence is more limited for coccidioidomycosis, measles, smallpox, and varicella. Pregnancy may also increase susceptibility for toxoplasmosis.
During the 2009 H1N1 pandemic, as well as during interpandemic periods, women in the third trimester of pregnancy were at increased risk for severe
disease, such as disease requiring admission to an intensive care unit or resulting in death, as compared with women in an earlier stage of pregnancy.
For hepatitis E, the case fatality rate among pregnant women has been estimated to be between 15% and 25%, as compared with a range of 0.5 to 4% in the population overall, with the highest susceptibility in the third trimester.
Primary herpes simplex infection, when occurring in pregnant women, has an increased risk of dissemination and hepatitis, an otherwise rare complication in immunocompetent adults, particularly during the third trimester. Also, recurrences of herpes genitalis increase in
frequency during pregnancy.
The risk of severe malaria by "Plasmodium falciparum" is three times as high in pregnant women, with a median maternal mortality of 40% reported in studies in the Asia–Pacific region. In women where the pregnancy is not the first, malaria infection is more often asymptomatic, even at high parasite loads, compared to women having their first pregnancy. There is a decreasing susceptibility to malaria with increasing parity, probably due to immunity to pregnancy-specific antigens. Young maternal age and increases the risk. Studies differ whether the risk is different in different . Limited data suggest that malaria caused by "Plasmodium vivax" is also more severe during pregnancy.
Severe and disseminated coccidioidomycosis has been reported the occur in increased frequency in pregnant women in several reports and case series, but subsequent large surveys, with the overall risk being rather low.
Varicella occurs at an increased rate during pregnancy, but mortality is not higher than that among men and non-pregnant women.
Listeriosis mostly occurs during the third trimester, with Hispanic women appearing to be at particular risk. Listeriosis is a vertically transmitted infection that may cause miscarriage, stillbirth, preterm birth, or serious neonatal disease.
Some infections are vertically transmissible, meaning that they can affect the child as well.
When accompanied by the combination of situs inversus (reversal of the internal organs), chronic sinusitis, and bronchiectasis, it is known as Kartagener syndrome (only 50% of primary ciliary dyskinesia cases include situs inversus).
Predisposition is the capacity we are born with to learn things such as language and concept of self. Negative environmental influences may block the predisposition (ability) we have to do some things. Behaviors displayed by animals can be influenced by genetic predispositions. Genetic predisposition towards certain human behaviors is scientifically investigated by attempts to identify patterns of human behavior that seem to be invariant over long periods of time and in very different cultures.
For example, philosopher Daniel Dennett has proposed that humans are genetically predisposed to have a theory of mind because there has been evolutionary selection for the human ability to adopt the intentional stance. The "intentional stance" is a useful behavioral strategy by which humans assume that others have minds like their own. This assumption allows you to predict the behavior of others based on personal knowledge of what you would do.
E. O. Wilson's and his book Consilience discuss the idea of genetic predisposition to behaviors
The field of evolutionary psychology explores the idea that certain behaviors have been selected for during the course of evolution.
"Penicillium marneffei" demonstrates in vitro susceptibility to multiple antifungal agents including ketoconazole, itraconazole, miconazole, flucytosine, and amphotericin B. Without treatment patients have a poor prognosis; death occur by liver failure as the fungus releases toxins in the bloodstream. The elevation of liver enzyme in the blood helps to establish a diagnosis.
Successful diagnosis of XDR-TB depends on the patient’s access to quality health-care services. If TB bacteria are found in the sputum, the diagnosis of TB can be made in a day or two, but this finding will not be able to distinguish between drug-susceptible and drug-resistant TB. To evaluate drug susceptibility, the bacteria need to be cultivated and tested in a suitable laboratory. Final diagnosis in this way for TB, and especially for XDR-TB, may take from 6 to 16 weeks. To reduce the time needed for diagnosis, new tools for rapid TB diagnosis are urgently needed.
The original method used to test for MDR-TB and XDR-TB was the Drug Susceptibility Testing (DST). DST is capable of determining how well four primary antitubercular drugs inhibit the growth of Mycobacterium Tuberculosis. The four primary antitubercular drugs are Isoniazid, Rifampin, Ethambutol and Pyrazinamide. Drug Susceptibility testing is done by making a Lowenstein-Jensen medium plate and spreading the bacteria on the plate. Disks containing one of the four primary drugs are added to the plate. After weeks of allowing the bacteria to grow the plate is checked for clear areas around the disk. If there is a clear area, the drug has killed the bacteria and most likely the bacteria is not resistant to that drug.
As "Mycobacterium tuberculosis" evolved new strains of resistant bacteria were being found such as XDR-TB. The problem was that primary DST was not suitable for testing bacteria strains that were extensively drug resistant. This problem was starting to be fixed when drug susceptibility tests started including not just the four primary drugs, but secondary drugs. This secondary test is known as Bactec MGIT 960 System. Although Bactec MGIT 960 System was accurate it was still slow at determining the level of resistance.
Diagnosis of MDR and XDR-TB in children is challenging. With an increasing number of cases being reported worldwide there is a great need for better diagnostic tools available for pediatric patients.
In recent years drug resistant tuberculosis testing has shown a lot of progress. Some studies have found an in-house assay that could rapidly detect resistance to drugs involved in the definition of XDR-TB directly from smear-positive specimens. The assay is called Reverse Line Blot Hybridization Assay also known as RLBH. The study showed that the results of RLBH were as accurate as other drug susceptibility tests, but at the same time didn`t take weeks to get results. RLBH testing only took 3 days to determine how resistant the strain of bacteria was.
The current research has shown progress in the testing of drug resistance. A recent study found that a research technique known as direct nitrate reductase assay (D-NRA) showed efficient accuracy for the rapid and simultaneous detection of resistance to isoniazid (INH), rifampicin (RIF), kanamycin (KAN) and ofloxacin (OFL). D-NRA results were obtained in 16.9 days, comparably less than other drug susceptibility testing. At the same time the study mentioned how D-NRA is a low-cost technology, easy to set up in clinical laboratories and suitable to be used for DST of M. tuberculosis in all smear-positive samples.
Several diagnostic tests for this condition have been proposed. These include nasal nitric oxide levels, light microscopy of biopsies for ciliary beat pattern and frequency and electron microscopic examination of dynein arms. Genetic testing has also been proposed but this is difficult given that there are multiple genes involved.
Due to the importance of disease caused by "S. pneumoniae" several vaccines have been developed to protect against invasive infection. The World Health Organization recommend routine childhood pneumococcal vaccination; it is incorporated into the childhood immunization schedule in a number of countries including the United Kingdom, United States, and South Africa.
Blau Syndrome is an autosomal dominant genetic inflammatory disorder which affects the skin, eyes, and joints. It is caused by a mutation in the NOD2 (CARD15) gene. Symptoms usually begin before the age of 4, and the disease manifests as early onset cutaneous sarcoidosis, granulomatous arthritis, and uveitis.
This syndrome is characterized by an increased susceptibility to disseminated nontuberculous mycobacterial infections, viral infections, especially with human papillomaviruses, and fungal infections, primarily histoplasmosis, and molds. There is profound monocytopenia, B lymphocytopenia and NK lymphocytopenia. Patients have an increased chance of developing malignancies, including: myelodysplasia/leukemia vulvar carcinoma, metastatic melanoma, cervical carcinoma, Bowen disease of the vulva, and multiple Epstein-Barr virus(+) leiomyosarcoma. Patients may also develop pulmonary alveolar proteinosis without mutations in the granulocyte-macrophage colony-stimulating factor receptor or anti-granulocyte-macrophage colony-stimulating factor autoantibodies. Last, patients may develop autoimmune phenomena, including lupus like syndromes, primary biliary cirrhosis or aggressive multiple sclerosis.
Of the 26, now 28, patients probably afflicted by this syndrome, 48% died of causes ranging from cancer to myelodysplasia with a mean age at death of 34.7 years and median age of 36.5 years.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."