Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Coggins test (agar immunodiffusion) is a sensitive diagnostic test for equine infectious anemia developed by Dr. Leroy Coggins in the 1970s.
Currently, the US does not have an eradication program due to the low rate of incidence. However, many states require a negative Coggins test for interstate travel. In addition, most horse shows and events require a negative Coggins test. Most countries require a negative test result before allowing an imported horse into the country.
Horse owners should verify that all the horses at a breeding farm and or boarding facility have a negative Coggins test before using the services of the facility. A Coggins test should be done on an annual basis. Tests every 6 months are recommended if there is increased traveling.
Diagnosis is by a swab of the affected area for laboratory testing. A Gram stain is performed to show Gram-positive cocci in chains. Then, the organism is cultured on blood agar with an added bacitracin antibiotic disk to show beta-hemolytic colonies and sensitivity (zone of inhibition around the disk) for the antibiotic. Culture on agar not containing blood, and then performing the catalase test should show a negative reaction for all streptococci. "S. pyogenes" is CAMP and hippurate tests negative. Serological identification of the organism involves testing for the presence of group-A-specific polysaccharide in the bacterium's cell wall using the Phadebact test.
The rapid pyrrolidonyl arylamidase (PYR) test is used for the presumptive identification of group A beta-hemolytic streptococci. GBS gives a negative finding on this test.
Diagnosis is usually based on serology (looking for an antibody response) rather than looking for the organism itself. Serology allows the detection of chronic infection by the appearance of high levels of the antibody against the virulent form of the bacterium. Molecular detection of bacterial DNA is increasingly used. Culture is technically difficult and not routinely available in most microbiology laboratories.
Q fever can cause endocarditis (infection of the heart valves) which may require transoesophageal echocardiography to diagnose. Q fever hepatitis manifests as an elevation of alanine transaminase and aspartate transaminase, but a definitive diagnosis is only possible on liver biopsy, which shows the characteristic fibrin ring granulomas.
Biopsies or cultures of a person's tick wound (eschar) are used to diagnose ATBF. However, this requires special culture media and can only be done by a laboratory with biohazard protection. There are more specialized laboratory tests available that use quantitative polymerase chain reactions (qPCR), but can only be done by laboratories with special equipment. Immunofluorescence assays can also be used, but are hard to interpret because of cross-reactions with other rickettsiae bacteria.
Abnormal laboratory findings seen in patients with Rocky Mountain spotted fever may include a low platelet count, low blood sodium concentration, or elevated liver enzyme levels. Serology testing and skin biopsy are considered to be the best methods of diagnosis. Although immunofluorescent antibody assays are considered some of the best serology tests available, most antibodies that fight against "R. rickettsii" are undetectable on serology tests the first seven days after infection.
Differential diagnosis includes dengue, leptospirosis, and, most recently, chikungunya and Zika virus infections.
Diagnosis of ATBF is mostly based on symptoms, as many laboratory tests are not specific for ATBF. Common laboratory test signs of ATBF are a low white blood cell count (lymphopenia) and low platelet count (thrombocytopenia), a high C-reactive protein, and mildly high liver function tests.
Protection is offered by Q-Vax, a whole-cell, inactivated vaccine developed by an Australian vaccine manufacturing company, CSL Limited. The intradermal vaccination is composed of killed "C. burnetii" organisms. Skin and blood tests should be done before vaccination to identify pre-existing immunity, because vaccinating people who already have an immunity can result in a severe local reaction. After a single dose of vaccine, protective immunity lasts for many years. Revaccination is not generally required. Annual screening is typically recommended.
In 2001, Australia introduced a national Q fever vaccination program for people working in “at risk” occupations. Vaccinated or previously exposed people may have their status recorded on the Australian Q Fever Register, which may be a condition of employment in the meat processing industry. An earlier killed vaccine had been developed in the Soviet Union, but its side effects prevented its licensing abroad.
Preliminary results suggest vaccination of animals may be a method of control. Published trials proved that use of a registered phase vaccine (Coxevac) on infected farms is a tool of major interest to manage or prevent early or late abortion, repeat breeding, anoestrus, silent oestrus, metritis, and decreases in milk yield when "C. burnetii" is the major cause of these problems.
A doctor or veterinarian will perform a physical exam which includes asking about the medical history and possible sources of exposure.
The following possible test could include:
- Blood samples (detect antibodies)
- Culture samples of body fluids(check for the bacteria "Yersinia pestis")
- Kidney and liver testing
- Check lymphomic system for signs of infection
- Examine body fluids for abnormal signs
- Check for swelling
- Check for signs of dehydration
- Check for fever
- Check for lung infection
In endemic areas, diagnosis is generally made on clinical grounds alone. However, overshadowing of the diagnosis is quite often as the clinical symptoms overlap with other infectious diseases such as dengue fever, paratyphoid, and pyrexia of unknown origin (PUO). If the eschar can be identified, it is quite diagnostic of scrub typhus, but this is very unreliable in the native population who have dark skin, and moreover, the site of eschar which is usually where the mite bites is often located in covered areas. Unless it is actively searched for, the eschar most likely would be missed. History of mite bite is often absent since the bite does not inflict pain and the mites are almost too small to be seen by the naked eye. Usually, scrub typhus is often labelled as PUO in remote endemic areas, since blood culture is often negative, yet it can be treated effectively with chloramphenicol. Where doubt exists, the diagnosis may be confirmed by a laboratory test such as serology. Again, this is often unavailable in most endemic areas, since the serological test involved is not included in the routine screening tests for PUO, especially in Burma (Myanmar).
The choice of laboratory test is not straightforward, and all currently available tests have their limitations. The cheapest and most easily available serological test is the Weil-Felix test, but this is notoriously unreliable. The gold standard is indirect immunofluorescence, but the main limitation of this method is the availability of fluorescent microscopes, which are not often available in resource-poor settings where scrub typhus is endemic. Indirect immunoperoxidase, a modification of the standard IFA method, can be used with a light microscope, and the results of these tests are comparable to those from IFA. Rapid bedside kits have been described that produce a result within one hour, but the availability of these tests is severely limited by their cost. Serological methods are most reliable when a four-fold rise in antibody titre is found. If the patient is from a nonendemic area, then diagnosis can be made from a single acute serum sample. In patients from endemic areas, this is not possible because antibodies may be found in up to 18% of healthy individuals.
Other methods include culture and polymerase chain reaction, but these are not routinely available and the results do not always correlate with serological testing, and are affected by prior antibiotic treatment. The currently available diagnostic methods have been summarised.
Providing basic sanitation and safe drinking water and food is the key for controlling the disease. In developed countries, enteric fever rates decreased in the past when treatment of municipal water was introduced, human feces were excluded from food production, and pasteurization of dairy products began. In addition, children and adults should be carefully educated about personal hygiene. This would include careful handwashing after defecation and sexual contact, before preparing or eating food, and especially the sanitary disposal of feces. Food handlers should be educated in personal hygiene prior to handling food or utensils and equipment. Infected individuals should be advised to avoid food preparation. Sexually active people should be educated about the risks of sexual practices that permit fecal-oral contact.
Those who travel to countries with poor sanitation should receive a live attenuated typhoid vaccine—Ty21a (Vivotif), which, in addition to the protection against typhoid fever, and may provide some protection against paratyphoid fever caused by the "S. enterica" serotypes A and B. In particular, a reanalysis of data from a trial conducted in Chile showed the Ty21a vaccine was 49% effective (95% CI: 8–73%) in preventing paratyphoid fever caused by the serotype B. Evidence from a study of international travelers in Israel also indicates the vaccine may prevent a fraction of infections by the serotype A, although no trial confirms this. This cross-protection by a typhoid vaccine is most likely due to O antigens shared between different "S. enterica" serotypes.
Exclusion from work and social activities should be considered for symptomatic, and asymptomatic, people who are food handlers, healthcare/daycare staff who are involved in patient care and/or child care, children attending unsanitary daycare centers, and older children who are unable to implement good standards of personal hygiene. The exclusion applies until two consecutive stool specimens are taken from the infected patient and are reported negative.
The cause of this disease is "Yersinia pseudotuberculosis" serotype O1. 95% are subtype O1b.
"Yersinia pseudotuberculosis" has been divided into 6 genetic groups: group 1 has only been isolated from the Far East.
Far East scarlet-like fever or scarlatinoid fever is an infectious disease caused by the gram negative bacillus "Yersinia pseudotuberculosis". In Japan it is called Izumi fever.
"S. pyogenes" infections are best prevented through effective hand hygiene. No vaccines are currently available to protect against "S. pyogenes" infection, although research has been conducted into the development of one. Difficulties in developing a vaccine include the wide variety of strains of "S. pyogenes" present in the environment and the large amount of time and number of people that will be needed for appropriate trials for safety and efficacy of the vaccine.
Although the presentation of scarlet fever can be clinically diagnosed, further testing may be required to distinguish it from other illnesses. Also, history of a recent exposure to someone with strep throat can be useful. There are two methods used to confirm suspicion of scarlet fever rapid antigen detection test and throat culture.
The rapid antigen detection test is a very specific test but not very sensitive. This means that if the result is positive (indicating that the Group A Strep Antigen was detected and therefore confirming that the patient has a Group A Strep Pharyngitis) then it is appropriate to treat them with antibiotics. However, if the Rapid Antigen Detection Test is negative (indicating that they do not have Group A Strep Pharyngitis), then a throat culture is required to confirm since it could be a false negative result. The throat culture is the current gold standard for diagnosis.
Serologic testing looks for the antibodies that the body produces against the streptococcal infection including antistreptolysin-O and antideoxyribonuclease B. It takes the body 2–3 weeks to make these antibodies so this type of testing is not useful for diagnosing a current infection. However, it is useful when assessing a patient who may have one of the complications from a previous streptococcal infection.
Throat cultures done after antibiotic therapy can tell you if the infection has been removed. These throat swabs however are not indicated because up to 25% of properly treated individuals can continue to carry the streptococcal infection while asymptomatic.
A vaccine is available, called "Chinese Live Attenuated EIA vaccine", developed in China and widely used there since 1983. Another attenuated live virus vaccine is in development in the United States.
Reuse of syringes and needles is a risk factor for transfer of the disease. Currently in the United States, all horses that test positive must be reported to federal authorities by the testing laboratory. EIA-positive horses are infected for life. Options for the horse include sending the horse to a recognized research facility, branding the horse and quarantining it at least 200 yards from other horses for the rest of its life, and euthanizing the horse. Very few quarantine facilities exist, which usually leads to the option of euthanizing the horse. The Florida Research Institute for Equine Nurturing, Development and Safety (a.k.a. F.R.I.E.N.D.S.) is one of the largest such quarantine facilities and is located in south Florida.
The horse industry and the veterinary industry strongly suggest that the risks posed by infected horses, even if they are not showing any clinical signs, are enough of a reason to impose such stringent rules. The precise impacts of the disease on the horse industry are unknown.
The following steps and precautions should be used to avoid infection of the septicemic plague:
- Caregivers of infected patients should wear masks, gloves, goggles and gowns
- Take antibiotics if close contact with infected patient has occurred
- Use insecticides throughout house
- Avoid contact with dead rodents or sick cats
- Set traps if mice or rats are present around the house
- Do not allow family pets to roam in areas where plague is common
- Flea control and treatment for animals (especially rodents)
Rocky Mountain spotted fever can be a very severe illness and patients often require hospitalization. Because "R. rickettsii" infects the cells lining blood vessels throughout the body, severe manifestations of this disease may involve the respiratory system, central nervous system, gastrointestinal system, or kidneys.
Long-term health problems following acute Rocky Mountain spotted fever infection include partial paralysis of the lower extremities, gangrene requiring amputation of fingers, toes, or arms or legs, hearing loss, loss of bowel or bladder control, movement disorders, and language disorders. These complications are most frequent in persons recovering from severe, life-threatening disease, often following lengthy hospitalizations
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.
A throat culture is the gold standard for the diagnosis of streptococcal pharyngitis, with a sensitivity of 90–95%. A rapid strep test (also called rapid antigen detection testing or RADT) may also be used. While the rapid strep test is quicker, it has a lower sensitivity (70%) and statistically equal specificity (98%) as a throat culture. In areas of the world where rheumatic fever is uncommon, a negative rapid strep test is sufficient to rule out the disease.
A positive throat culture or RADT in association with symptoms establishes a positive diagnosis in those in which the diagnosis is in doubt. In adults, a negative RADT is sufficient to rule out the diagnosis. However, in children a throat culture is recommended to confirm the result. Asymptomatic individuals should not be routinely tested with a throat culture or RADT because a certain percentage of the population persistently "carries" the streptococcal bacteria in their throat without any harmful results.
Without treatment, the disease is often fatal. Since the use of antibiotics, case fatalities have decreased from 4–40% to less than 2%.
The drug most commonly used is doxycycline or tetracycline, but chloramphenicol is an alternative. Strains that are resistant to doxycycline and chloramphenicol have been reported in northern Thailand. Rifampicin and azithromycin are alternatives. Azithromycin is an alternative in children and pregnant women with scrub typhus, and when doxycycline resistance is suspected. Ciprofloxacin cannot be used safely in pregnancy and is associated with stillbirths and miscarriage.
Combination therapy with doxycycline and rifampicin is not recommended due to possible antagonism.
As the symptoms of streptococcal pharyngitis overlap with other conditions, it can be difficult to make the diagnosis clinically. Coughing, nasal discharge, diarrhea, and red, irritated eyes in addition to fever and sore throat are more indicative of a viral sore throat than of strep throat. The presence of marked lymph node enlargement along with sore throat, fever, and tonsillar enlargement may also occur in infectious mononucleosis.
Any age may be affected although it is most common in children aged five to fifteen years. By the time adulthood is reached about half the population will have become immune following infection at some time in their past. Outbreaks can arise especially in nursery schools, preschools, and elementary schools. Infection is an occupational risk for school and day-care personnel. There is no vaccine available for human parvovirus B19, though attempts have been made to develop one.
A diagnosis usually can be made by the presenting signs and symptoms alone. If the diagnosis is unclear, a throat swab or stool specimen may be taken to identify the virus by culture. The common incubation period (the time between infection and onset of symptoms) ranges from three to six days. Early detection of HFMD is important in preventing an outbreak in the pediatric population.
One method is long term use of antibiotics to prevent future group A streptococcal infections. This method is only indicated for people who have had complications like recurrent attacks of acute rheumatic fever or rheumatic heart disease. Antibiotics are limited in their ability to prevent these infections since there are a variety of subtypes of group A streptococci that can cause the infection.
The vaccine approach has a greater likelihood of effectively preventing group A streptococcal infections because vaccine formulations can target multiple subtypes of the bacteria. A vaccine developed by George and Gladys Dick in 1924 was discontinued due to poor efficacy and the introduction of antibiotics. Difficulties in vaccine development include the considerable strain variety of group A streptococci present in the environment and the amount of time and number of people needed for appropriate trials for safety and efficacy of any potential vaccine. There have been several attempts to create a vaccine in the past few decades. These vaccines, which are still in the development phase, expose to the person to proteins present on the surface of the group A streptococci to activate an immune response that will prepare the person to fight and prevent future infections.
There used to be a diphtheria scarlet fever vaccine. It was, however, found not to be effective. This product was discontinued by the end of World War II.
Omsk Hemorrhagic Fever could be diagnosed by isolating virus from blood, or by serologic testing using immunosorbent serological assay. OHF rating of fatality is 0.5–3%. There is no specific treatment for OHF so far but one way to help get rid of OHF is by supportive therapy. Supportive therapy helps maintain hydration and helps to provide precautions for patients with bleeding disorders.