Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.
Although not yet formally incorporated in the generally accepted classification systems, molecular profiling of myelodysplastic syndrome genomes has increased the understanding of prognostic molecular factors for this disease. For example, in low-risk MDS, "IDH1" and "IDH2" mutations are associated with significantly worsened survival.
The International Prognostic Scoring System (IPSS) was developed in the mid-1990s to assess the prognosis of MDS patients. This system stratifies cases into 2 groups; a lower-risk group (sub divided into low and intermediate-1) and a higher risk (subdivided into intermediate-2 and high). It uses the blast percentage, number of cytopaenias and bone marrow cytogenetics data to place cases of CMML into these groups. Due to the scoring system being developed for MDS, the more myeloproliferative cases of CMML (WBC >13x10) are excluded from the scoring system. Although the IPSS scoring system is used clinically, there is a high variability in each group. For this reason, new modalities for assessing prognosis in MDS (and CMML) are being developed.
The outlook in MDS is variable, with about 30% of patients progressing to refractory AML. The median survival rate varies from years to months, depending on type. Stem-cell transplantation offers possible cure, with survival rates of 50% at 3 years, although older patients do poorly.
Indicators of a good prognosis:
Younger age; normal or moderately reduced neutrophil or platelet counts; low blast counts in the bone marrow (< 20%) and no blasts in the blood; no Auer rods; ringed sideroblasts; normal or mixed karyotypes without complex chromosome abnormalities; and "in vitro" marrow culture with a nonleukemic growth pattern
Indicators of a poor prognosis:
Advanced age; severe neutropenia or thrombocytopenia; high blast count in the bone marrow (20-29%) or blasts in the blood;
Auer rods; absence of ringed sideroblasts; abnormal localization or immature granulocyte precursors in bone marrow section;
completely or mostly abnormal karyotypes, or complex marrow chromosome abnormalities and "in vitro" bone marrow culture with a leukemic growth pattern
Karyotype prognostic factors:
- Good: normal, -Y, del(5q), del(20q)
- Intermediate or variable: +8, other single or double anomalies
- Poor: complex (>3 chromosomal aberrations); chromosome 7 anomalies
The IPSS is the most commonly used tool in MDS to predict long-term outcome.
Cytogenetic abnormalities can be detected by conventional cytogenetics, a FISH panel for MDS, or virtual karyotype.
The blood count typically shows decreased numbers of blood cells—including a decreased amount of circulating red blood cells, white blood cells, and platelets.
The bone marrow may show hemophagocytosis.
The liver function tests are usually elevated. A low level of the protein albumin in the blood is common.
The serum C reactive protein, erythrocyte sedimentation rate, and ferritin level are markedly elevated. In children, a ferritin above 10000 is very sensitive and specific for the diagnosis of HLH, however, the diagnostic utility for ferritin is less for adult HLH patients.
The serum fibrinogen level is usually low and the D-dimer level is elevated.
The sphingomyelinase is elevated.
Bone marrow biopsy shows histiocytosis.
The current (2008) diagnostic criteria for HLH are
1. A molecular diagnosis consistent with HLH. These include the identification of pathologic mutations of PRF1, UNC13D, or STX11.
OR
2. Fulfillment of five out of the eight criteria below:
- Fever (defined as a temperature >100.4 °F, >38 °C)
- Enlargement of the spleen
- Decreased blood cell counts affecting at least two of three lineages in the peripheral blood:
- Haemoglobin <9 g/100 ml (in infants <4 weeks: haemoglobin <10 g/100 ml) (anemia)
- Platelets <100×10/L (thrombocytopenia)
- Neutrophils <1×10/L (neutropenia
- High blood levels of triglycerides (fasting, greater than or equal to 265 mg/100 ml) and/or decreased amounts of fibrinogen in the blood (≤ 150 mg/100 ml)
- Ferritin ≥ 500 ng/ml
- Haemophagocytosis in the bone marrow, spleen or lymph nodes
- Low or absent natural killer cell activity
- Soluble CD25 (soluble IL-2 receptor) >2400 U/ml (or per local reference laboratory)
In addition, in the case of familial HLH, no evidence of malignancy should be apparent.
It should be noted that not all five out of eight criteria are required for diagnosis of HLH in adults, and a high index of suspicion is required for diagnosis as delays results in increased mortality. The diagnostic criteria were developed in pediatric populations and have not been validated for adult HLH patients. Attempts to improve diagnosis of HLH have included use of the HScore, which can be used to estimate an individual's risk of HLH.
There are two internationally accepted treatment protocols, which are geographically based:
- North America: the Children’s Oncology Group (COG) JMML study
- Europe: the European Working Group for Myelodysplastic Syndromes (EWOG-MDS) JMML study
The following procedures are used in one or both of the current clinical approaches listed above:
White blood counts exceeding 100 x 10^9 / L (100,000 / microL) present symptoms of tissue hypoxia and may signal possible neurological and respiratory distress. Continuing research has shown that patients have suffered from hypoxia at leukocyte levels below 100 x 10^9 / L (100,000 / microL), therefore patients with leukemia need regular neurological and respiratory monitoring when leukocyte counts are approaching 100 x 10^9 / L (100,000 / microL) to decrease chances of tissue hypoxia. Biopsy's acquired are examined for damage to microvasculature, which serves as evidence of hypoxia through the identification of leukocyte blockage within the tissue. Due to a biopsy's invasive nature and the risks associated with the procedure, it is only used when deemed necessary.
Measurements for arterial pO2 have shown to be falsely decreased in patients with hyperleuckocytosis because of white blood cells ability to utilize oxygen. Pulse oximetry should be used to more accurately assess pO2 levels of a patient suspected to be suffering from leukocytosis.
Automated blood cell counters may be inaccurate due to fragments of blast cells being labeled on blood smears as platelets. The most accurate form of confirming platelet counts is by using a manual platelet count and review of a peripheral smear.
Serum potassium levels may also be artificially elevated caused by a release from leukemic blasts during in vitro clotting process, therefore serum potassium levels should be monitored by herparinized (the addition of herapin prevents coagulation) plasma samples in order to obtain accurate results of potassium levels.
Disseminated intravascular coagulation may occur in a significant amount of patients with presentation of various degrees of thrombin generation, followed by decreased fibrinogen and increased fibrinolysis.
Spontaneous tumor lysis syndrome is present in approximately 10 percent of patients with leuckostasis, lab tests are used to measure the potential of elevated serum concentrations such as uric acid, potassium, phosphate, and hyocalcemia.
Disseminated intravascular coagulation and spontaneous tumor lysis syndrome have the ability to develop before and after chemotherapy treatment. Patients undergoing this type of therapy need to be closely monitored before and after in addition to undergoing prophylactic measures to prevent possible complications.
The following criteria are required in order to diagnose JMML:
All 3 of the following:
- No Philadelphia chromosome or BCR/ABL fusion gene.
- Peripheral blood monocytosis >1 x 10/L.
- Less than 20% blasts (including promonocytes) in the blood and bone marrow (blast count is less than 2% on average)
Two or more of the following criteria:
- Hemoglobin F increased for age.
- Immature granulocytes and nucleated red cells in the peripheral blood.
- White blood cell count >10 x 10/L.
- Clonal chromosomal abnormality (e.g., monosomy 7).
- Granulocyte macrophage colony-stimulating factor (GM-CSF) hypersensitivity of myeloid progenitors in vitro.
These criteria are identified through blood tests and bone marrow tests.
Blood tests: A complete blood count (CBC) will be performed on a child suspected of having JMML and throughout the treatment and recovery of a child diagnosed with JMML.
The differential diagnosis list includes infectious diseases like Epstein-Barr virus, cytomegalovirus, human herpesvirus 6, histoplasma, mycobacteria, and toxoplasma, which can produce similar symptoms.
Evidence is conflicting on the prognostic significance of chloromas in patients with acute myeloid leukemia. In general, they are felt to augur a poorer prognosis, with a poorer response to treatment and worse survival; however, others have reported chloromas associate, as a biologic marker, with other poor prognostic factors, and therefore do not have independent prognostic significance.
Epidemiologically, the disorder usually develops slowly and is mainly observed in people over the age of 50. It may also develop as a side-effect of treatment with some drugs that target hematological disorders, such as polycythemia vera or chronic myelogenous leukemia.
Diagnosis of myelofibrosis is made on the basis of bone marrow biopsy. A physical exam of the abdomen may reveal enlargement of the spleen, the liver, or both.
Blood tests are also used in diagnosis. Primary myelofibrosis can begin with a blood picture similar to that found in polycythemia vera or chronic myelogenous leukemia. Most people with myelofibrosis have moderate to severe anemia. Eventually thrombocytopenia, a decrease of blood platelets develops. When viewed through a microscope, a blood smear will appear markedly abnormal, with presentation of pancytopenia, which is a reduction in the number of all blood cell types: red blood cells, white blood cells, and platelets. Red blood cells may show abnormalities including bizarre shapes, such as teardrop-shaped cells, and nucleated red blood cell precursors may appear in the blood smear. (Normally, mature red blood cells in adults do not have a cell nucleus, and the presence of nucleated red blood cells suggests that immature cells are being released into the bloodstream in response to a very high demand for the bone marrow to produce new red blood cells.) Immature white cells are also seen in blood samples, and basophil counts are increased.
When late in the disease progression an attempt is made to take a sample of bone marrow by aspiration, it may result in a dry tap, meaning that where the needle can normally suck out a sample of semi-liquid bone marrow, it produces no sample because the marrow has been replaced with collagen fibers. A bone marrow biopsy will reveal collagen fibrosis, replacing the marrow that would normally occupy the space.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.
Since leukostais/ hyperleukostasis is associated with leukemia, preventative treatments are put into action upon diagnosis.
Patients with hyerleukocystois associated with leukemia are always considered candidates for tumor lysis syndrome prophylaxis in addition to aggressive intravenous hydration with allopurinol or rasburicase to decrease serum uric acid levels.
The first clue to a diagnosis of AML is typically an abnormal result on a complete blood count. While an excess of abnormal white blood cells (leukocytosis) is a common finding with the leukemia, and leukemic blasts are sometimes seen, AML can also present with isolated decreases in platelets, red blood cells, or even with a low white blood cell count (leukopenia). While a presumptive diagnosis of AML can be made by examination of the peripheral blood smear when there are circulating leukemic blasts, a definitive diagnosis usually requires an adequate bone marrow aspiration and biopsy as well as ruling out pernicious anemia (Vitamin B12 deficiency), folic acid deficiency and copper deficiency.
Marrow or blood is examined under light microscopy, as well as flow cytometry, to diagnose the presence of leukemia, to differentiate AML from other types of leukemia (e.g. acute lymphoblastic leukemia - ALL), and to classify the subtype of disease. A sample of marrow or blood is typically also tested for chromosomal abnormalities by routine cytogenetics or fluorescent "in situ" hybridization. Genetic studies may also be performed to look for specific mutations in genes such as "FLT3", nucleophosmin, and "KIT", which may influence the outcome of the disease.
Cytochemical stains on blood and bone marrow smears are helpful in the distinction of AML from ALL, and in subclassification of AML. The combination of a myeloperoxidase or Sudan black stain and a nonspecific esterase stain will provide the desired information in most cases. The myeloperoxidase or Sudan black reactions are most useful in establishing the identity of AML and distinguishing it from ALL. The nonspecific esterase stain is used to identify a monocytic component in AMLs and to distinguish a poorly differentiated monoblastic leukemia from ALL.
The diagnosis and classification of AML can be challenging, and should be performed by a qualified hematopathologist or hematologist. In straightforward cases, the presence of certain morphologic features (such as Auer rods) or specific flow cytometry results can distinguish AML from other leukemias; however, in the absence of such features, diagnosis may be more difficult.
The two most commonly used classification schemata for AML are the older French-American-British (FAB) system and the newer World Health Organization (WHO) system. According to the widely used WHO criteria, the diagnosis of AML is established by demonstrating involvement of more than 20% of the blood and/or bone marrow by leukemic myeloblasts, except in the three best prognosis forms of acute myeloid leukemia with recurrent genetic abnormalities (t(8;21), inv(16), and t(15;17)) in which the presence of the genetic abnormality is diagnostic irrespective of blast percent. The French–American–British (FAB) classification is a bit more stringent, requiring a blast percentage of at least 30% in bone marrow (BM) or peripheral blood (PB) for the diagnosis of AML. AML must be carefully differentiated from "preleukemic" conditions such as myelodysplastic or myeloproliferative syndromes, which are treated differently.
Because acute promyelocytic leukemia (APL) has the highest curability and requires a unique form of treatment, it is important to quickly establish or exclude the diagnosis of this subtype of leukemia. Fluorescent "in situ" hybridization performed on blood or bone marrow is often used for this purpose, as it readily identifies the chromosomal translocation [t(15;17)(q22;q12);] that characterizes APL. There is also a need to molecularly detect the presence of PML/RARA fusion protein, which is an oncogenic product of that translocation.
Aside from observing the symptoms characteristic of X-linked thrombocytopenia in infancy (easy bruising, mild anemia, mucosal bleeding), molecular genetic testing would be done to confirm the diagnosis. Furthermore, flow cytometry or western blotting would be used to test for decreased or absent amounts of WASp. Family history would also assist in diagnosis, with specific attention to maternally related males with "WAS"-related disorders. Because "WAS"-related disorders are phenotypically similar, it is important to confirm the absence of the diagnostic criteria for Wiskoff-Aldrich syndrome at the outset. These diagnostic criteria include eczema, lymphoma, autoimmune disorder, recurrent bacterial or viral infections, family history of maternally related males with a "WAS"-related disorder, and absent or decreased "WASp". X-linked congenital neutropenia can be diagnostically distinguished from XLT with persistent neutropenia, arrested development of the bone marrow, and normal "WASp" expression.
CML accounts for 8% of all leukaemias in the UK, and around 680 people were diagnosed with the disease in 2011.
Acute promyelocytic leukemia can be distinguished from other types of AML based on microscopic examination of the blood film or a bone marrow aspirate or biopsy as well as finding the characteristic rearrangement. Definitive diagnosis requires testing for the "PML/RARA" fusion gene. This may be done by polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH), or conventional cytogenetics of peripheral blood or bone marrow. This mutation involves a translocation of the long arm of chromosomes 15 and 17. On rare occasions, a cryptic translocation may occur which cannot be detected by cytogenetic testing; on these occasions PCR testing is essential to confirm the diagnosis. Presence of multiple Auer rods on peripheral blood smear is highly suggestive of acute promyelocytic leukemia.
Hydroxycarbamide and anagrelide are contraindicated during pregnancy and nursing. Essential thrombocytosis can be linked with a three-fold increase in risk of miscarriage. Throughout pregnancy, close monitoring of the mother and fetus is recommended. Low-dose low molecular weight heparin (e.g. enoxaparin) may be used. For life-threatening complications, the platelet count can be reduced rapidly using platelet apheresis, a procedure that removes platelets from the blood and returns the remainder to the patient.
Many patients eventually develop acute myelogenous leukemia (AML). Older patients are extremely likely to develop head and neck, esophageal, gastrointestinal, vulvar and anal cancers. Patients who have had a successful bone marrow transplant and, thus, are cured of the blood problem associated with FA still must have regular examinations to watch for signs of cancer. Many patients do not reach adulthood.
The overarching medical challenge that Fanconi patients face is a failure of their bone marrow to produce blood cells. In addition, Fanconi patients normally are born with a variety of birth defects. A good number of Fanconi patients have kidney problems, trouble with their eyes, developmental retardation and other serious defects, such as microcephaly (small head).
An absolute neutrophil count (ANC) chronically less than 500/mm3, usually less than 200/mm3, is the main sign of Kostmann's. Other elements include the severity of neutropenia, the chronology (from birth; not emerging later), and other normal findings (hemoglobin, platelets, general body health). Isolated neutropenia in infants can occur in viral infections, autoimmune neutropenia of infancy, bone marrow suppression from a drug or toxin, hypersplenism, and passive placental transfer of maternal IgG.
A bone marrow test can assist in diagnosis. The bone marrow usually shows early granulocyte precursors, but myelopoietic development stops ("arrests") at the promyelocyte and/or myelocyte stage, so that few maturing forms are seen. Neutrophil survival is normal.
Needs mention of (rarer) myelokathexis types. e.g. G6PC3 variant and
Conventionally, a leukocytosis exceeding 50,000 WBC/mm with a significant increase in early neutrophil precursors is referred to as a leukemoid reaction. The peripheral blood smear may show myelocytes, metamyelocytes, promyelocytes, and rarely myeloblasts; however, there is a mix of early mature neutrophil precursors, in contrast to the immature forms typically seen in acute leukemia. Serum leukocyte alkaline phosphatase is normal or elevated in leukemoid reaction, but is depressed in chronic myelogenous leukemia. The bone marrow in a leukemoid reaction, if examined, may be hypercellular but is otherwise typically unremarkable.
Leukemoid reactions are generally benign and are not dangerous in and of themselves, although they are often a response to a significant disease state (see "Causes" below). However, leukemoid reactions can resemble more serious conditions such as chronic myelogenous leukemia (CML), which can present with identical findings on peripheral blood smear.
Historically, various clues including the leukocyte alkaline phosphatase score and the presence of basophilia were used to distinguish CML from a leukemoid reaction. However, at present the test of choice in adults to distinguish CML is an assay for the presence of the Philadelphia chromosome, either via cytogenetics and FISH, or via PCR for the BCR/ABL fusion gene. The LAP (Leukocyte Alkaline Phosphatase) score is high in reactive states but is low in CML. In cases where the diagnosis is uncertain, a qualified hematologist or oncologist should be consulted.
Definitive diagnosis of a chloroma usually requires a biopsy of the lesion in question. Historically, even with a tissue biopsy, pathologic misdiagnosis was an important problem, particularly in patients without a clear pre-existing diagnosis of acute myeloid leukemia to guide the pathologist. In one published series on chloroma, the authors stated that 47% of the patients were initially misdiagnosed, most often as having a malignant lymphoma.
However, with advances in diagnostic techniques, the diagnosis of chloromas can be made more reliable. Traweek et al. described the use of a commercially available panel of monoclonal antibodies, against myeloperoxidase, CD68, CD43, and CD20, to accurately diagnose chloroma via immunohistochemistry and differentiate it from lymphoma. Nowadays, immunohistochemical staining using monoclonal antibodies against CD33 and CD117 would be the mainstay of diagnosis. The increasingly refined use of flow cytometry has also facilitated more accurate diagnosis of these lesions.
Primary myelofibrosis (PMF) is associated with the "JAK2V617F" mutation in up to 50% of cases, the "JAK2" exon 12 mutations in 1-2% of cases, and the MPL (thrombopoietin receptor) mutation in up to 5% of cases:
- Prefibrotic/cellular phase - increased, small and atypical megakaryocytes which cluster, reticulin fibrosis, later trichrome (collagenous) fibrosis, and increased myeloid precursors
- Fibrotic phase - collagenous fibrosis with lack of marrow elements
Depending on the nature of the myeloproliferative neoplasm, diagnostic tests may include red cell mass determination (for polycythemia), bone marrow aspirate and trephine biopsy, arterial oxygen saturation and carboxyhaemoglobin level, neutrophil alkaline phosphatase level, vitamin B (or B binding capacity), serum urate or direct sequencing of the patient's DNA.
According to the WHO Classification of Hematopoietic and Lymphoid Neoplasms 2008 myeloproliferative neoplasms are divided into categories by diagnostic characteristics as follows:
Bone marrow biopsy shows abnormal megakaryocytes, macrocytic erythropoiesis, and defects in neutrophil production and fibrosis of the marrow (myelofibrosis).
Clinically patients present with reduction in the count of all blood cells (pancytopenia), a very few blasts in the peripheral blood and no or little spleen enlargement (splenomegaly).
Cells are usually CD34 positive.