Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of this syndrome can be done via the test "Branchiootorenal syndrome via the SIX5 Gene" whose purpose is mutation confirmation and risk assessment (screening).
Detection usually begins with a routine doctor visit when the fundal height is being measured or during an ultrasound examination. When large for gestational age fetuses (LGA) are identified, there are two common causes: maternal diabetes or incorrect dates. However, if these two causes can be ruled out, an ultrasound is performed to detect for overgrowth and other abnormalities. At this point, it becomes essential for a clinical geneticist to assist in the correct selection of tests and possible diagnosis.
First signs of SGBS may be observed as early as 16 weeks of gestation. Aids to diagnosing might include the presence of macrosomia, polyhydramnios, elevated maternal serum-α-fetoprotein, cystic hygroma, hydrops fetalis, increased nuchal translucency, craniofacial abnormalities, visceromegaly, renal abnormalities, congenital diaphragmatic hernia, polydactyly, and a single umbilical artery.
If there is a known mutation in the family, prenatal testing is available. Prenatal testing is also possible by looking for evidence of the mild SGBS phenotype in the mother and the positive SGBS phenotype in male family members. Family members who are positive of SGBS may undergo mutational analysis of genes GCP3, GCP4, and CXORF5. Genomic balance in Xp22 and Xq26 may also be analyzed through array comparative genomic hybridization.
Due to the high percentage of male deaths during the neonatal period, early detection of tumors is crucial. In order to detect the presence of tumors, screening in SGBS patients should include abdominal ultrasound, urinalysis, and biochemical markers that screen for embryonic tumors.
Once the infant is born, possibility of hypoglycemia must be assessed along with cardiac, genitalia, liver, and adrenal evaluations. Such tests include chest radiographs, electrocardiogram, echocardiogram, renal sonography, and abdominal sonography to test for possible abnormalities.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
If the medical history and the actual exam of the hemangioma look typical for PHACE Syndrome, more tests are ordered to confirm the diagnosis. These tests may include:
- Ultrasound
- Magnetic resonance imaging (MRI)
- Magnetic resonance angiography of the brain (MRA)
- Echocardiogram
- Eye exam by an eye doctor
- Other tests may be needed for diagnosis and treatment
Freeman–Sheldon syndrome is a type of distal arthrogryposis, related to distal arthrogryposis type 1 (DA1). In 1996, more strict criteria for the diagnosis of Freeman–Sheldon syndrome were drawn up, assigning Freeman–Sheldon syndrome as distal arthrogryposis type 2A (DA2A).
On the whole, DA1 is the least severe; DA2B is more severe with additional features that respond less favourably to therapy. DA2A (Freeman–Sheldon syndrome) is the most severe of the three, with more abnormalities and greater resistance to therapy.
Freeman–Sheldon syndrome has been described as a type of congenital myopathy.
In March 2006, Stevenson et al. published strict diagnostic criteria for distal arthrogryposis type 2A (DA2A) or Freeman–Sheldon syndrome. These included two or more features of distal arthrogryposis: microstomia, whistling-face, nasolabial creases, and 'H-shaped' chin dimple.
There are little data on prognosis. Rarely, some patients have died in infancy from respiratory failure; otherwise, life expectancy is considered to be normal.
The treatment of branchio-oto-renal syndrome is done per each affected area (or organ). For example, a person with hearing problems should have appropriate supports and prompt attention for any inflammation of the ear.
A specialist should observe any kidney problems. Surgical repair may be needed depending on the degree of a defect or problem, whether a transplant or dialysis is needed.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Treatment of 3-M syndrome is aimed at the specific symptoms presented in each individual. With the various symptoms of this disorder being properly managed and affected individuals having normal mental development, 3-M syndrome is not a life - threatening condition and individuals are able to lead a near normal life with normal life expectancy.
Treatment may involve the coordinated efforts of many healthcare professionals, such as pediatricians, orthopedists, dentists and/or other specialists depending on the symptoms.
- Possible management options for short stature are surgical bone lengthening or growth hormone therapy.
- Orthopedic techniques and surgery may be used to treat certain skeletal abnormalities.
- Plastic surgery may also be performed on individuals to help correct certain cranio-facial anomalies.
- Individuals with dental abnormalities may undergo corrective procedures such as braces or oral surgeries.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Branchio-oculo-facial syndrome is difficult to diagnose because it has incomplete penetrance. It is often misdiagnosed as branchio-oto-renal syndrome because of their similarities in symptoms.
It was estimated that only about 50 cases of BOFS have been documented in the medical literature as of 2004.
The syndrome is generally diagnosed clinically shortly after birth. The infant usually has respiratory difficulty, especially when supine. The cleft palate is often U-shaped and wider than in cleft palate that is not associated with this syndrome.
Van der Woude syndrome (VDWS) and popliteal pterygium syndrome (PPS) are allelic variants of the same condition; that is, they are caused by different mutations of the same gene. PPS includes all the features of VDWS, plus popliteal pterygium, syngnathia, distinct toe/nail abnormality, syndactyly, and genito-urinary malformations.
Usually the hemangioma requires medical therapy. The child may need other therapies, depending on what other organs or structures are involved.
Donnai–Barrow syndrome appears to be a rare disorder. A few dozen affected individuals have been reported in many regions of the world.
TBS is an autosomal dominant involving the a mutation of the gene SALL1, which encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. The clinical features of TBS overlap with VATER and VACTERL associations, oculo-auriculo-vertebral (OAV) spectrum, branchio-oto-renal (BOR) syndrome, and Fanconi anemia and other 'anus-hand-ear' syndromes.
Although some symptoms can be life-threatening, many people diagnosed with Townes-Brocks Syndrome live a normal lifespan.
MCDK is usually diagnosed by ultrasound examination before birth. Mean age at the time of antenatal diagnosis is about 28 weeks A microscopic analysis of urine in individuals with probable multicystic dysplastic kidney should be done. One meta-analysis demonstrated that unilateral MCDK occurs more frequently in males and the greater percentage of MCKD occur on the left side of the body.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
Lachiewicz–Sibley syndrome is a rare autosomal dominant disorder characterized by preauricular pits and renal disease. Persons with this disease may have hypoplasic kidneys or proteinuria. This disease was first described in a Caucasian family of British and Irish descent that emigrated to Ohio in the 19th century before settling in Nebraska. Many of the members of this family still live in Nebraska, although the relatives are now scattered throughout the country.
Unlike branchio-oto-renal (BOR) syndrome, Lachiewicz–Sibley syndrome is characterized by only preauricular pitting and renal disease. Persons with BOR syndrome also present with hearing loss, branchial fistulas or cysts, malformed ears, and lacrimal stenosis. Other anomalies in BOR syndrome may include a long narrow face, a deep overbite, and facial paralysis.
It was characterized in 1985.
Townes–Brocks syndrome (TBS) is a rare genetic disease that has been described in approximately 200 cases in the published literature. It affects both males and females equally. The condition was first identified in 1972. by Philip L. Townes, MD, PhD, who was at the time a human geneticists and Professor of Pediatrics, and Eric Brocks, MD, who was at the time a medical student, both at the University of Rochester.
Donnai–Barrow syndrome is a genetic disorder first described by Dian Donnai and Margaret Barrow in 1993. It is associated with "LRP2". It is an inherited (genetic) disorder that affects many parts of the body.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
MCDK is not treatable. However, the patient is observed periodically for the first few years during which ultrasounds are generally taken to ensure the healthy kidney is functioning properly and that the unhealthy kidney is not causing adverse effects. In severe cases MCDK can lead to neonatal fatality (in bilateral cases), however in unilateral cases the prognosis might be better (it would be dependent on associated anomalies).