Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Primary hyperaldosteronism can be mimicked by Liddle syndrome, and by ingestion of licorice and other foods containing glycyrrhizin. In one case report, hypertension and quadriparesis resulted from intoxication with a non-alcoholic pastis (an anise-flavored aperitif containing glycyrrhizinic acid).
Some people only use Conn's syndrome for when it occurs due to an adrenal adenoma (a type of benign tumor). In practice, however, the terms are often used interchangeably, regardless of the underlying physiology.
Other conditions such as Liddle's Syndrome can mimic the clinical features of AME, so diagnosis can be made by calculating the ratio of free urinary cortisol to free urinary cortisone. Since AME patients create less cortisone, the ratio will much be higher than non-affected patients. Alternatively, one could differentiate between the two syndromes by administering a potassium-sparing diuretic. Patients with Liddle's syndrome will only respond to a diuretic that binds the ENaC channel, whereas those with AME will respond to a diuretic that binds to ENaC or the mineralcorticoid receptor.
Persistently increased blood pressure may also be due to kidney disease or hyperthyroidism. When a cause is not readily apparent, and especially when hypokalemia is identified, hyperaldosteronism should be considered. Diagnostic imaging, usually beginning with abdominal ultrasound, may identify that one or both adrenal glands are enlarged. Imaging may also detect metastasis and usually includes radiographs of the chest in addition to abdominal ultrasound and/or computerized tomography (CT).
The ratio of plasma aldosterone concentration (PAC) to plasma renin activity (PRA) can be used as a screening test for PHA. In cats with unilateral or bilateral zona glomerulosa tumors, the PAC may be very high while the PRA is completely suppressed. In cats with idiopathic bilateral nodular hyperplasia of the zona glomerulosa, the PAC may be slightly elevated or high normal. In the presence of hypokalemia even a mildly elevated aldosterone should be considered inappropriately high. A high-normal or elevated PAC with a low PRA indicates persistent aldosterone synthesis in the presence of little or no stimulation of the renin-angiotensin system.
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
Evaluation of a child with persistent high blood pressure usually involves analysis of blood electrolytes and an aldosterone level, as well as other tests. In Liddle's disease, the serum sodium is typically elevated, the serum potassium is reduced, and the serum bicarbonate is elevated. These findings are also found in hyperaldosteronism, another rare cause of hypertension in children. Primary hyperaldosteronism (also known as Conn's syndrome), is due to an aldosterone-secreting adrenal tumor (adenoma) or adrenal hyperplasia. Aldosterone levels are high in hyperaldosteronism, whereas they are low to normal in Liddle syndrome.
A genetic study of the ENaC sequences can be requested to detect mutations (deletions, insertions, missense mutations) and get a diagnosis.
The treatment for AME is based on the blood pressure control with Aldosterone antagonist like Spironalactone which also reverses the hypokalemic metabolic alkalosis and other anti-hypertensives. Renal transplant is found curative in almost all clinical cases.AME is exceedingly rare, with fewer than 100 cases recorded worldwide.
Liquorice consumption may also cause a temporary form of AME due to its ability to block 11β-hydroxysteroid dehydrogenase type 2, in turn causing increased levels of cortisol. Cessation of licorice consumption will reverse this form of AME.
Secondary refers to an abnormality that indirectly results in pathology through a predictable physiologic pathway, i.e., a renin-producing tumor leads to increased aldosterone, as the body's aldosterone production is normally regulated by renin levels.
One cause is a juxtaglomerular cell tumor. Another is renal artery stenosis, in which the reduced blood supply across the juxtaglomerular apparatus stimulates the production of renin. Likewise, fibromuscular dysplasia may cause stenosis of the renal artery, and therefore secondary hyperaldosteronism. Other causes can come from the tubules: Hyporeabsorption of sodium (as seen in Bartter and Gitelman syndromes) will lead to hypovolemia/hypotension, which will activate the RAAS.
Primary aldosteronism (hyporeninemic hyperaldosteronism) was previously thought to be most commonly caused by an adrenal adenoma, termed Conn's syndrome. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is the cause in up to 70% of cases. Differentiating between the two is important, as this determines treatment. Also see congenital adrenal hyperplasia.
Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
Two familial forms have been identified: type I (dexamethasone suppressible), and type II (that has been linked to 7p22.)
Features
- Hypertension
- Hypokalemia (e.g., may cause muscle weakness)
- Alkalosis
Investigations
- High serum aldosterone
- Low serum renin
- High-resolution CT abdomen
Management
- Adrenal adenoma: surgery
- Bilateral adrenocortical hyperplasia: aldosterone antagonist, e.g., spironolactone
As most cases of FHH are asymptomatic and benign, the diagnosis of FHH is less likely to be made.
Typically, diagnosis is made in the pursuit of uncovering the etiology of hypercalcemia.
Calcium levels are often in the high normal range or slightly elevated.
Commonly, the parathyroid hormone level is checked and may be slightly elevated or also on the high normal end.
Normally, high calcium should cause low PTH and so this level of PTH is inappropriately high due to the decreased sensitivity of the parathyroid to calcium.
This may be mistaken for primary hyperparathyroidism.
However, evaluation of urine calcium level will reveal a low level of urine calcium.
This too is inappropriate as high serum calcium should result in high urine calcium.
If urine calcium is not checked, this may lead to parathyroidectomy for presumed primary hyperparathyroidism.
Additionally as the name implies, there may be a family history of benign hypercalcemia.
Ultimately, diagnosis of familial hypocalciuric hypercalcemia is made — as the name implies — by the combination of low urine calcium and high serum calcium.
Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent.
Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary.
In GRA, the hypersecretion of aldosterone and the accompanying hypertension are remedied when ACTH secretion is suppressed by administering glucocorticoids.
Dexamethasone, spironolactone and eplerenone have been used in treatment.
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
The treatment is with a low sodium (low salt) diet and a potassium-sparing diuretic that directly blocks the sodium channel. Potassium-sparing diuretics that are effective for this purpose include amiloride and triamterene; spironolactone is not effective because it acts by regulating aldosterone and Liddle syndrome does not respond to this regulation. Amiloride is the only treatment option that is safe in pregnancy. Medical treatment usually corrects both the hypertension and the hypokalemia, and as a result these patients may not require any potassium replacement therapy.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition that mimics hyperaldosteronism. Like hyperaldosteronism, it produces hypertension associated with low plasma renin activity, and metabolic alkalosis associated with hypokalemia. Unlike hyperaldosteronism, it involves aldosterone levels that are normal or low (hypoaldosteronism).
This condition is characterized by hypertension, kaliuresis and reduced plasma renin.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
Glucocorticoid remediable aldosteronism (GRA), also describable as "aldosterone synthase hyperactivity", is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.
It is a cause of primary hyperaldosteronism.
Few women of childbearing age have high blood pressure, up to 11% develop hypertension of pregnancy. While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary.
Certain medications, including NSAIDs (Motrin/Ibuprofen) and steroids can cause hypertension. Other medications include extrogens (such as those found in oral contraceptives with high estrogenic activity), certain antidepressants (such as venlafaxine), buspirone, carbamazepine, bromocriptine, clozapine, and cyclosporine.
High blood pressure that is associated with the sudden withdrawal of various antihypertensive medications is called rebound hypertension. The increases in blood pressure may result in blood pressures greater than when the medication was initiated. Depending on the severity of the increase in blood pressure, rebound hypertension may result in a hypertensive emergency. Rebound hypertension is avoided by gradually reducing the dose (also known as "dose tapering"), thereby giving the body enough time to adjust to reduction in dose. Medications commonly associated with rebound hypertension include centrally-acting antihypertensive agents, such as clonidine and methyl-dopa.
Other herbal or "natural products" which have been associated with hypertension include ma huang, St John's wort, and licorice.
The amount of potassium deficit can be calculated using the following formula:
Meanwhile, the daily body requirement of potassium is calculated by multiplying 1 mmol to body weight in kilogrammes. Adding potassium deficit and daily potassium requirement would give the total amount of potassium need to be corrected in mmol. Dividing mmol by 13.4 will give the potassium in grams.
Familial LPL deficiency should be considered in anyone with severe hypertriglyceridemia and the chylomicronemia syndrome. The absence of secondary causes of severe hypertriglyceridemia (like e.g. diabetes, alcohol, estrogen-, glucocorticoid-, antidepressant- or isotretinoin-therapy, certain antihypertensive agents, and paraproteinemic disorders) increases the possibility of LPL deficiency. In this instance besides LPL also other loss-of-function mutations in genes that regulate catabolism of triglyceride-rich lipoproteins (like e.g. ApoC2, ApoA5, LMF-1, GPIHBP-1 and GPD1) should also be considered
The diagnosis of familial lipoprotein lipase deficiency is finally confirmed by detection of either homozygous or compound heterozygous pathogenic gene variants in "LPL" with either low or absent lipoprotein lipase enzyme activity.
Lipid measurements
· Milky, lipemic plasma revealing severe hyperchylomicronemia;
· Severely elevated fasting plasma triglycerides (>2000 mg/dL);
LPL enzyme
· Low or absent LPL activity in post-heparin plasma;
· LPL mass level reduced or absent in post-heparin plasma;
Molecular genetic testing
The LPL gene is located on the short (p) arm of chromosome 8 at position 22. More than 220 mutations in the LPL gene have been found to cause familial lipoprotein lipase deficiency so far.
The earliest electrocardiographic (ECG) findings associated with hypokalemia is a decrease in T waves height. Then, ST depression and T inversion happens as serum potassium reduces further. Due to prolonged repolarization of ventricular Purkinje fibers, prominent U wave occurs (usually seen at V2 and V3 leads), frequently superimposed upon the T wave and therefore produces the appearance of a prolonged QT interval when serum potassium reduces to below 3 mEq/L.
An adrenal "incidentaloma" is an adrenal tumor found by coincidence without clinical symptoms or suspicion. It is one of the more common unexpected findings revealed by computed tomography (CT), magnetic resonance imaging (MRI), or ultrasonography.
In these cases, a dexamethasone suppression test is often used to detect cortisol excess, and metanephrines or catecholamines for excess of these hormones. Tumors under 3 cm are generally considered benign and are only treated if there are grounds for a diagnosis of Cushing's syndrome or pheochromocytoma. Radiodensity gives a clue in estimating malignancy risk, wherein a tumor with 10 Hounsfield units or less on an unenhanced CT is probably a lipid-rich adenoma.
Hormonal evaluation includes:
- 1-mg overnight dexamethasone suppression test
- 24-hour urinary specimen for measurement of fractionated metanephrines and catecholamines
- Blood plasma aldosterone concentration and plasma renin activity, "if hypertension is present"
On CT scan, benign adenomas typically are of low radiographic density (due to fat content) and show rapid washout of contrast medium (50% or more of the contrast medium washes out at 10 minutes). If the hormonal evaluation is negative and imaging suggests benign, followup should be considered with imaging at 6, 12, and 24 months and repeat hormonal evaluation yearly for 4 years
The U.S. Preventive Services Task Force in 2008 strongly recommends routine screening for men 35 years and older and women 45 years and older for lipid disorders and the treatment of abnormal lipids in people who are at increased risk of coronary heart disease. They also recommend routinely screening men aged 20 to 35 years and women aged 20 to 45 years if they have other risk factors for coronary heart disease. In 2016 they concluded that testing the general population under the age of 40 without symptoms is of unclear benefit.
In Canada, screening is recommended for men 40 and older and women 50 and older. In those with normal cholesterol levels, screening is recommended once every five years. Once people are on a statin further testing provides little benefit except to possibly determine compliance with treatment.