Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The current (2008) diagnostic criteria for HLH are
1. A molecular diagnosis consistent with HLH. These include the identification of pathologic mutations of PRF1, UNC13D, or STX11.
OR
2. Fulfillment of five out of the eight criteria below:
- Fever (defined as a temperature >100.4 °F, >38 °C)
- Enlargement of the spleen
- Decreased blood cell counts affecting at least two of three lineages in the peripheral blood:
- Haemoglobin <9 g/100 ml (in infants <4 weeks: haemoglobin <10 g/100 ml) (anemia)
- Platelets <100×10/L (thrombocytopenia)
- Neutrophils <1×10/L (neutropenia
- High blood levels of triglycerides (fasting, greater than or equal to 265 mg/100 ml) and/or decreased amounts of fibrinogen in the blood (≤ 150 mg/100 ml)
- Ferritin ≥ 500 ng/ml
- Haemophagocytosis in the bone marrow, spleen or lymph nodes
- Low or absent natural killer cell activity
- Soluble CD25 (soluble IL-2 receptor) >2400 U/ml (or per local reference laboratory)
In addition, in the case of familial HLH, no evidence of malignancy should be apparent.
It should be noted that not all five out of eight criteria are required for diagnosis of HLH in adults, and a high index of suspicion is required for diagnosis as delays results in increased mortality. The diagnostic criteria were developed in pediatric populations and have not been validated for adult HLH patients. Attempts to improve diagnosis of HLH have included use of the HScore, which can be used to estimate an individual's risk of HLH.
The blood count typically shows decreased numbers of blood cells—including a decreased amount of circulating red blood cells, white blood cells, and platelets.
The bone marrow may show hemophagocytosis.
The liver function tests are usually elevated. A low level of the protein albumin in the blood is common.
The serum C reactive protein, erythrocyte sedimentation rate, and ferritin level are markedly elevated. In children, a ferritin above 10000 is very sensitive and specific for the diagnosis of HLH, however, the diagnostic utility for ferritin is less for adult HLH patients.
The serum fibrinogen level is usually low and the D-dimer level is elevated.
The sphingomyelinase is elevated.
Bone marrow biopsy shows histiocytosis.
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Familial dysautonomia is inherited in an autosomal recessive pattern, which means 2 copies of the gene in each cell are altered. If both parents are shown to be carriers by genetic testing, there is a 25% chance that the child will produce FD. Prenatal diagnosis for pregnancies at increased risk for FD by amniocentesis (for 14–17 weeks) or chorionic villus sampling (for 10–11 weeks) is possible.
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Genetic testing is performed on a small sample of blood from the tested individual. The DNA is examined with a designed probe specific to the known mutations. The accuracy of the test is above 99%. Dr. Anat Blumenfeld of the Hadasah Medical center in Jerusalem identified chromosome number 9 as the responsible chromosome.
X-linked lymphoproliferative disease (also known as "Duncan's disease" or "Purtilo syndrome") is a lymphoproliferative disorder.
Antiviral treatment has been tried with some success in a small number of patients.
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
Diagnosis of FHM is made according to the following criteria:
- Two attacks of each of the following:
- At least one close (first or second degree) relative with FHM
- No other likely cause
Sporadic forms follow the same diagnostic criteria, with the exception of family history.
In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).
The diagnosis relies on the findings outlined above. In addition, other specific markers of macrophage activation (e.g. soluble CD163), and lymphocyte activation (e.g. soluble IL-2 receptor) can be helpful. NK cell function analysis may show depressed NK function, or, flow cytometry may show a depressed NK cell population.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
The following are the Amsterdam criteria in identifying high-risk candidates for molecular genetic testing:
"Amsterdam Criteria (all bullet points must be fulfilled):"
- Three or more family members with a confirmed diagnosis of colorectal cancer, one of whom is a first degree (parent, child, sibling) relative of the other two
- Two successive affected generations
- One or more colon cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
"Amsterdam Criteria II (all bullet points must be fulfilled):"
- Three or more family members with HNPCC-related cancers, one of whom is a first-degree relative of the other two
- Two successive affected generations
- One or more of the HNPCC-related cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
Pralatrexate is one compound currently under investigations for the treatment of PTCL.
In many children hydroa vacciniforme (HV) regresses spontaneously by early adulthood. In the 29 patients followed by Iwatuski et al., 11 of the 18 with definite or probable HV were available for follow-up and all were alive without progression of their symptoms. Some had recurrent eruptions of HV. In contrast out of 11 severe patients in this study, 6 had evidence of chronic EBV infection, 5 had hypersensitivity to mosquito bites, 4 had virus-associated hemophagocytic syndrome. 6 of the severe group had natural killer-cell lymphocytosis in the peripheral blood.
Genetic testing for mutations in DNA mismatch repair genes is expensive and time-consuming, so researchers have proposed techniques for identifying cancer patients who are most likely to be HNPCC carriers as ideal candidates for genetic testing. The Amsterdam Criteria (see below) are useful, but do not identify up to 30% of potential Lynch syndrome carriers. In colon cancer patients, pathologists can measure microsatellite instability in colon tumor specimens, which is a surrogate marker for DNA mismatch repair gene dysfunction. If there is microsatellite instability identified, there is a higher likelihood for a Lynch syndrome diagnosis. Recently, researchers combined microsatellite instability (MSI) profiling and immunohistochemistry testing for DNA mismatch repair gene expression and identified an extra 32% of Lynch syndrome carriers who would have been missed on MSI profiling alone. Currently, this combined immunohistochemistry and MSI profiling strategy is the most advanced way of identifying candidates for genetic testing for the Lynch syndrome.
Genetic counseling and genetic testing are recommended for families that meet the Amsterdam criteria, preferably before the onset of colon cancer.
Wolf–Hirschhorn syndrome (WHS), also known as chromosome deletion Dillan 4p syndrome, Pitt–Rogers–Danks syndrome (PRDS) or Pitt syndrome, was first described in 1961 by Americans Herbert L. Cooper and Kurt Hirschhorn and, thereafter, gained worldwide attention by publications by the German Ulrich Wolf, and Hirschhorn and their co-workers, specifically their articles in the German scientific magazine "Humangenetik". It is a characteristic phenotype resulting from a partial deletion of chromosomal material of the short arm of chromosome 4 (del(4p16.3)).
Strangely, in boys with X-linked lymphoproliferative disorder, there is an inability to mount an immune response to the Epstein-Barr virus (EBV), which often leads to death from bone marrow failure, irreversible hepatitis, and malignant lymphoma. However, the connection between EBV and X-linked lymphoproliferative disorder is yet to be determined.
Patients produce insufficient numbers of CD27 memory B cells.
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
Wolf–Hirschhorn syndrome is a microdeletion syndrome caused by a deletion within HSA band 4p16.3 of the short arm of chromosome 4, particularly in the region of and . About 87% of cases represent a "de novo" deletion, while about 13% are inherited from a parent with a chromosome translocation. In the cases of familial translocation, there is a 2 to 1 excess of maternal transmission. Of the "de novo" cases, 80% are paternally derived. Severity of symptoms and expressed phenotype differ based on the amount of genetic material deleted. The critical region for determining the phenotype is at 4p16.3 and can often be detected through genetic testing and fluorescence in situ hybridization (FISH). Genetic testing and genetic counseling is offered to affected families.
The histopathologic characteristics of melanoma in FAMMM kindreds are not different from those seen in sporadic cases of melanoma and, thus, are not useful in diagnosing the syndrome. Superficial spreading melanoma (SSM) and nodular melanoma are the most frequently encountered histological melanoma subtypes in patients with CDKN2A mutations, which is consistent with the relative early age of onset.