Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Low testosterone can be identified through a simple blood test performed by a laboratory, ordered by a health care provider. Blood for the test must be taken in the morning hours, when levels are highest, as levels can drop by as much as 13% during the day and all normal reference ranges are based on morning levels. However, low testosterone in the absence of any symptoms does not clearly need to be treated.
Normal total testosterone levels depend on the man's age but generally range from 240–950 ng/dL (nanograms per deciliter) or 8.3-32.9 nmol/L (nanomoles per liter). Some men with normal total testosterone have low free or bioavailable testosterone levels which could still account for their symptoms. Men with low serum testosterone levels should have other hormones checked, particularly luteinizing hormone to help determine why their testosterone levels are low and help choose the most appropriate treatment (most notably, testosterone is usually not appropriate for secondary or tertiary forms of male hypogonadism, in which the LH levels are usually reduced).
Treatment is often prescribed for total testosterone levels below 230 ng/dL with symptoms. If the serum total testosterone level is between 230 and 350 ng/dL, free or bioavailable testosterone should be checked as they are frequently low when the total is marginal.
The standard range given is based off widely varying ages and, given that testosterone levels naturally decrease as humans age, age-group specific averages should be taken into consideration when discussing treatment between doctor and patient. In men, testosterone falls approximately 1 to 3 percent each year.
- Blood testing
A position statement by the Endocrine Society expressed dissatisfaction with most assays for total, free, and bioavailable testosterone. In particular, research has questioned the validity of commonly administered assays of free testosterone by radioimmunoassay. The free androgen index, essentially a calculation based on total testosterone and sex hormone-binding globulin levels, has been found to be the worst predictor of free testosterone levels and should not be used. Measurement by equilibrium dialysis or mass spectroscopy is generally required for accurately results, particularly for free testosterone which is present normal in such small concentrations.
Testing serum LH and FSH levels are often used to assess hypogonadism in women, particularly when menopause is believed to be happening. These levels change during a woman's normal menstrual cycle, so the history of having ceased menstruation coupled with high levels aids the diagnosis of being menopausal. Commonly, the post-menopausal woman is not called hypogonadal if she is of typical menopausal age. Contrast with a young woman or teen, who would have hypogonadism rather than menopause. This is because hypogonadism is an abnormality, whereas menopause is a normal change in hormone levels. In any case, the LH and FSH levels will rise in cases of primary hypogonadism or menopause, while they will be low in women with secondary or tertiary hypogonadism.
Hypogonadism is often discovered during evaluation of delayed puberty, but ordinary delay, which eventually results in normal pubertal development, wherein reproductive function is termed constitutional delay. It may be discovered during an infertility evaluation in either men or women.
Conditions justifying newborn screening for any disorder include (1) a simple test with an acceptable sensitivity and specificity, (2) a dire consequence if not diagnosed early, (3) an effective treatment if diagnosed, and (4) a frequency in the population high enough to justify the expense. In the last decade more states and countries are adopting newborn screening for salt-wasting CAH due to 21-hydroxylase deficiency, which leads to death in the first month of life if not recognized.
The salt-wasting form of CAH has an incidence of 1 in 15,000 births and is potentially fatal within a month if untreated. Steroid replacement is a simple, effective treatment. However, the screening test itself is less than perfect. While the 17α-hydroxyprogesterone level is easy to measure and sensitive (rarely missing real cases), the test has a poorer specificity. Screening programs in the United States have reported that 99% of positive screens turn out to be false positives upon investigation of the infant. This is a higher rate of false positives than the screening tests for many other congenital metabolic diseases.
When a positive result is detected, the infant must be referred to a pediatric endocrinologist to confirm or disprove the diagnosis. Since most infants with salt-wasting CAH become critically ill by 2 weeks of age, the evaluation must be done rapidly despite the high false positive rate.
Levels of 17α-hydroxyprogesterone, androstenedione, and cortisol may play a role in screening.
Early puberty is believed to put girls at higher risk of sexual abuse, unrelated to pedophilia because the child has developed secondary sex characteristics; however, a causal relationship is, as yet, inconclusive. Early puberty also puts girls at a higher risk for teasing or bullying, mental health disorders and short stature as adults. Helping children control their weight is suggested to help delay puberty. Early puberty additionally puts girls at a "far greater" risk for breast cancer later in life. Girls as young as 8 are increasingly starting to menstruate, develop breasts and grow pubic and underarm hair; these "biological milestones" typically occurred only at 13 or older in the past. African-American girls are especially prone to early puberty. There are theories debating the trend of early puberty, but the exact causes are not known.
Though boys face fewer problems upon early puberty than girls, early puberty is not always positive for boys; early sexual maturation in boys can be accompanied by increased aggressiveness due to the surge of hormones that affect them. Because they appear older than their peers, pubescent boys may face increased social pressure to conform to adult norms; society may view them as more emotionally advanced, although their cognitive and social development may lag behind their appearance. Studies have shown that early maturing boys are more likely to be sexually active and are more likely to participate in risky behaviours.
The diagnosis is often one of exclusion found during the workup of delayed puberty.
A paper published in 2012 by Prof. Jacques Young highlights a typical example of the diagnostic work up involved in a suspected case of KS/CHH.
One of the biggest problems in the diagnosis of KS and other forms of CHH is the ability to distinguish between a normal constitutional delay of puberty and KS or CHH.
The main biochemical parameters in men are low serum testosterone and low levels of the gonadotropins LH and FSH, and in women low serum oestrogen and low levels of LH and FSH.
For both males and females with constitutional delay of puberty, endogenous puberty will eventually commence without treatment. However a delay in treatment in a case of KS/HH will delay the physical development of the patient and can cause severe psychological damage. The "wait and see" approach applied to "late bloomers" is probably counterproductive to the needs of the patient whereas a step-by-step approach with hormone replacement therapy used with slowly increasing doses can be used as a diagnostic tool.
Post natal diagnosis of KS / CHH before the age of 6 months is sometimes possible. The normal post natal hormonal surge of gonadotropins along with testosterone or oestrogen is absent in babies with KS / CHH. This lack of detectable hormones in the blood can be used as a diagnostic indicator, especially in male infants.
Normally testicular enlargement is the key sign for the onset of puberty in boys however the use of nighttime LH sampling can help predict the onset of puberty.
In females diagnosis is sometimes further delayed as other causes of amenorrhoea normally have to be investigated first before a case of KS/CHH is considered. KS/CHH can still occur in females in cases when menstruation has begun but stopped after one or two menstrual bleeds. A study of GnRH deficient women in 2011 showed that 10% had experienced one or two bleeds before the onset of amenorrhoea.
In males, treatment with age-appropriate levels of testosterone can be used to distinguish between a case of KS/CHH from a case of delayed puberty. If just delayed the testosterone can "kick-start" endogenous puberty, as demonstrated by testicular enlargement, whereas in the case of KS/CHH there will be no testicular enlargement while on testosterone therapy alone. If no puberty is apparent, especially no testicular development, then a review by a reproductive endocrinologist may be appropriate. Dr Richard Quinton, a leading UK expert on KS/CHH, suggests that if puberty is not apparent by the age of 16 then the patient should be referred for endocrinological review.
A full endocrine workup will be required to measure the levels of the other pituitary hormones, especially prolactin, to check that the pituitary gland is working correctly. There can be other general health issues such as being overweight or having an underlying chronic or acute illness which could cause a delay of puberty. This makes it essential for a patient to get a full endocrine review to distinguish between a case of KS/CHH and another cause for the pubertal delay.
Bone age can be assessed using hand and wrist X-rays. If the bone age is significantly lower than the chronological age of the patient, this could suggest delayed puberty unless there is another underlying reason for the discrepancy.
A karyotype may be performed to rule out Klinefelter syndrome and Turner syndrome, although the hormones levels would also rule out both these relatively common reasons for hypogonadism.
A magnetic resonance imaging (MRI) scan can be used to determine whether the olfactory bulb is present and to check for any physical irregularities of the pituitary gland or hypothalamus.
A standard smell test can be used to check for anosmia, but it must be remembered that even in total anosmia various substances (such as menthol and alcohol) can still be detected by direct stimulation of the trigeminal nerve.
Genetic screening can be carried out, but in light of the unknown genes involved in the majority of KS and CHH cases, a negative result will not rule out a possible diagnosis.
A review paper published in 2014 highlighted the need for doctors to be aware of the possible diagnosis of KS / HH if pubertal delay is found alongside associated "red flag" symptoms. The symptoms listed in the paper were split into two categories; reproductive symptoms associated with the lack of mini puberty seen between birth and six months of age and non-reproductive symptoms which are associated with specific forms of HH. As with other review papers the authors also warned against the "wait and see" approach when puberty appears to be delayed.
Azoospermia is usually detected in the course of an infertility investigation. It is established on the basis of two semen analysis evaluations done at separate occasions (when the seminal specimen after centrifugation shows no sperm under the microscope) and requires a further work-up.
The investigation includes a history, a physical examination including a thorough evaluation of the scrotum and testes, laboratory tests, and possibly imaging. History includes the general health, sexual health, past fertility, libido, and sexual activity. Past exposure to a number of agents needs to be queried including medical agents like hormone/steroid therapy, antibiotics, 5-ASA inhibitors (sulfasalazine), alpha-blockers, 5 alpha-reductase inhibitors, chemotherapeutic agents, pesticides, recreational drugs (marijuana, excessive alcohol), and heat exposure of the testes. A history of surgical procedures of the genital system needs to be elicited. The family history needs to be assessed to look for genetic abnormalities.
Congenital absence of the vas deferens may be detectable on physical examination and can be confirmed by a transrectal ultrasound (TRUS). If confirmed genetic testing for cystic fibrosis is in order. Transrectal ultrasound can also assess azoospermia caused by obstruction, or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Retrograde ejaculation is diagnosed by examining a postejaculatory urine for presence of sperm after making it alkaline and centifuging it.
Low levels of LH and FSH with low or normal testosterone levels are indicative of pretesticular problems, while high levels of gonadotropins indicate testicular problems. However, often this distinction is not clear and the differentiation between obstructive versus non-obstructive azoospermia may require a testicular biopsy. On the other hand, "In azoospermic men with a normal ejaculate volume, FSH serum level greater than two times the upper limit of the normal range is reliably diagnostic of dysfunctional spermatogenesis and, when found, a diagnostic testicular biopsy is usually unnecessary, although no consensus exists in this matter." But also, extremely high levels of FSH (>45 ID/mL) have been correlated with successful microdissection testicular sperm extraction.
Serum inhibin-B weakly indicates presence of sperm cells in the testes, raising chances for successfully achieving pregnancy through testicular sperm extraction (TESE), although the association is not very substantial, having a sensitivity of 0.65 (95% confidence interval [CI]: 0.56–0.74) and a specificity of 0.83 (CI: 0.64–0.93) for prediction the presence of sperm in the testes in non-obstructive azoospermia.
Seminal plasma proteins TEX101 and ECM1 were recently proposed for the differential diagnosis of azoospermia forms and subtypes, and for prediction of TESE outcome. Mount Sinai Hospital, Canada started clinical trial to test this hypothesis in 2016.
It is recommended that men primary hypopituitarism may be linked to a genetic cause, a genetic evaluation is indicated in men with azoospermia due to primary hypopituitarism. Azoospermic men with testicular failure are advised to undergo karyotype and Y-micro-deletion testing.
Some strategies suggested or proposed for avoiding male infertility include the following:
- Avoiding smoking as it damages sperm DNA
- Avoiding heavy marijuana and alcohol use.
- Avoiding excessive heat to the testes.
- Maintaining optimal frequency of coital activity: sperm counts can be depressed by daily coital activity and sperm motility may be depressed by coital activity that takes place too infrequently (abstinence 10–14 days or more).
- Wearing a protective cup and jockstrap to protect the testicles, in any sport such as baseball, football, cricket, lacrosse, hockey, softball, paintball, rodeo, motorcross, wrestling, soccer, karate or other martial arts or any sport where a ball, foot, arm, knee or bat can come into contact with the groin.
- Diet: Healthy diets (i.e. the Mediterranean diet) rich in such nutrients as omega-3 fatty acids, some antioxidants and vitamins, and low in saturated fatty acids (SFAs) and trans-fatty acids (TFAs) are inversely associated with low semen quality parameters. In terms of food groups, fish, shellfish and seafood, poultry, cereals, vegetables and fruits, and low-fat dairy products have been positively related to sperm quality. However, diets rich in processed meat, soy foods, potatoes, full-fat dairy products, coffee, alcohol and sugar-sweetened beverages and sweets have been inversely associated with the quality of semen in some studies. The few studies relating male nutrient or food intake and fecundability also suggest that diets rich in red meat, processed meat, tea and caffeine are associated with a lower rate of fecundability. This association is only controversial in the case of alcohol. The potential biological mechanisms linking diet with sperm function and fertility are largely unknown and require further study.
Since CAH is an autosomal recessive disease, most children with CAH are born to parents unaware of the risk and with no family history. Each child will have a 25% chance of being born with the disease. Families typically wish to minimize the degree of virilization of a girl. There is no known prenatal harm to a male fetus from CAH, so treatment can begin at birth.
Adrenal glands of female fetuses with CAH begin producing excess testosterone by the 9th week of gestation. The most important aspects of virilization (urogenital closure and phallic urethra) occur between 8 and 12 weeks. Theoretically, if enough glucocorticoid could be supplied to the fetus to reduce adrenal testosterone production by the 9th week, virilization could be prevented and the difficult decision about timing of surgery avoided.
The challenge of preventing severe virilization of girls is twofold: detection of CAH at the beginning of the pregnancy, and delivery of an effective amount of glucocorticoid to the fetus without causing harm to the mother.
The first problem has not yet been entirely solved, but it has been shown that if dexamethasone is taken by a pregnant woman, enough can cross the placenta to suppress fetal adrenal function.
At present no program screens for risk in families who have not yet had a child with CAH. For families desiring to avoid virilization of a second child, the current strategy is to start dexamethasone as soon as a pregnancy has been confirmed even though at that point the chance that the pregnancy is a girl with CAH is only 12.5%. Dexamethasone is taken by the mother each day until it can be safely determined whether she is carrying an affected girl.
Whether the fetus is an affected girl can be determined by chorionic villus sampling at 9–11 weeks of gestation, or by amniocentesis at 15–18 weeks gestation. In each case the fetal sex can be determined quickly, and if the fetus is a male the dexamethasone can be discontinued. If female, fetal DNA is analyzed to see if she carries one of the known abnormal alleles of the "CYP21" gene. If so, dexamethasone is continued for the remainder of the pregnancy at a dose of about 1 mg daily.
Most mothers who have followed this treatment plan have experienced at least mild cushingoid effects from the glucocorticoid but have borne daughters whose genitalia are much less virilized.
MAIS is only diagnosed in normal phenotypic males, and is not typically investigated except in cases of male infertility. MAIS has a mild presentation that often goes unnoticed and untreated; even with semenological, clinical and laboratory data, it can be difficult to distinguish between men with and without MAIS, and thus a diagnosis of MAIS is not usually made without confirmation of an AR gene mutation. The androgen sensitivity index (ASI), defined as the product of luteinizing hormone (LH) and testosterone (T), is frequently raised in individuals with all forms of AIS, including MAIS, although many individuals with MAIS have an ASI in the normal range. Testosterone levels may be elevated despite normal levels of luteinizing hormone. Conversion of testosterone (T) to dihydrotestosterone (DHT) may be impaired, although to a lesser extent than is seen in 5α-reductase deficiency. A high ASI in a normal phenotypic male, especially when combined with azoospermia or oligospermia, decreased secondary terminal hair, and/or impaired conversion of T to DHT, can be indicative of MAIS, and may warrant genetic testing.
Ultrasonography of the scrotum is useful when there is a suspicion of some particular diseases. It may detect signs of testicular dysgenesis, which is often related to an impaired spermatogenesis and to a higher risk of testicular cancer. Scrotum ultrasonography may also detect testicular lesions suggestive of malignancy. A decreased testicular vascularization is characteristic of testicular torsion, whereas hyperemia is often observed in epididymo-orchitis or in some malignant conditions such as lymphoma and leukemia. Doppler ultrasonography useful in assessing venous reflux in case of a varicocele, when palpation is unreliable or in detecting recurrence or persistence after surgery, although the impact of its detection and surgical correction on sperm parameters and overall fertility is debated.
Dilation of the head or tail of the epididymis is suggestive of obstruction or inflammation of the male reproductive tract. Such abnormalities are associated with abnormalities in sperm parameters, as are abnormalities in the texture of the epididymis. Scrotal and transrectal ultrasonography (TRUS) are useful in detecting uni- or bilateral congenital absence of the vas deferens (CBAVD), which may be associated with abnormalities or agenesis of the epididymis, seminal vesicles or kidneys, and indicate the need for testicular sperm extraction. TRUS plays a key role in assessing azoospermia caused by obstruction, and detecting distal CBAVD or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Studies indicate that breast development in girls and the appearance of pubic hair in girls and boys are starting earlier than in previous generations. As a result, "early puberty" in children, particularly girls, as young as 9 and 10 is no longer considered abnormal, although it may be upsetting to parents and can be harmful to children who mature physically at a time when they are immature mentally.
No age reliably separates normal from abnormal processes in children, but the following age thresholds for evaluation are thought to minimize the risk of missing a significant medical problem:
- Breast development in boys before appearance of pubic hair or testicular enlargement,
- Pubic hair or genital enlargement (gonadarche) in boys with onset before 9.5 years,
- Pubic hair (pubarche) before 8 or breast development (thelarche) in girls with onset before 7 years,
- Menstruation (menarche) in girls before 10 years.
Medical evaluation is sometimes necessary to recognize the few children with serious conditions from the majority who have entered puberty early but are still medically normal. Early sexual development warrants evaluation because it may:
- induce early bone maturation and reduce eventual adult height,
- indicate the presence of a tumour or other serious problem,
- cause the child, particularly a girl, to become an object of adult sexual interest.
If both partners are young and healthy and have been trying to conceive for one year without success, a visit to a physician or women's health nurse practitioner (WHNP) could help to highlight potential medical problems earlier rather than later. The doctor or WHNP may also be able to suggest lifestyle changes to increase the chances of conceiving.
Women over the age of 35 should see their physician or WHNP after six months as fertility tests can take some time to complete, and age may affect the treatment options that are open in that case.
A doctor or WHNP takes a medical history and gives a physical examination. They can also carry out some basic tests on both partners to see if there is an identifiable reason for not having achieved a pregnancy. If necessary, they refer patients to a fertility clinic or local hospital for more specialized tests. The results of these tests help determine the best fertility treatment.
Early histological features expected to be seen on examination of gynecomastic tissue attained by fine-needle aspiration biopsy include the following: proliferation and lengthening of the ducts, an increase in connective tissue, an increase in inflammation and swelling surrounding the ducts, and an increase in fibroblasts in the connective tissue. Chronic gynecomastia may show different histological features such as increased connective tissue fibrosis, an increase in the number of ducts, less inflammation than in the acute stage of gynecomastia, increased subareolar fat, and hyalinization of the stroma. When surgery is performed, the gland is routinely sent to the lab to confirm the presence of gynecomastia and to check for tumors under a microscope. The utility of pathologic examination of breast tissue removed from male adolescent gynecomastia patients has recently been questioned due to the rarity of breast cancer in this population.
Mammography is the method of choice for radiologic examination of male breast tissue in the diagnosis of gynecomastia when breast cancer is suspected on physical examination. However, since breast cancer is a rare cause of breast tissue enlargement in men, mammography is rarely needed. If mammography is performed and does not reveal findings suggestive of breast cancer, further imaging is not typically necessary. If a tumor of the adrenal glands or the testes is thought to be responsible for the gynecomastia, ultrasound examination of these structures may be performed.
In terms of the diagnosis of 17β-hydroxysteroid dehydrogenase III deficiency the following should be taken into account:
- Delta(4)-A to T ratio (unusually increased)
- Thyroid dyshormonogenesis
- Genetic testing
CAIS can only be diagnosed in normal phenotypic females. It is not usually suspected unless the menses fail to develop at puberty, or an inguinal hernia presents during premenarche. As many as 1–2% of prepubertal girls that present with an inguinal hernia will also have CAIS.
A diagnosis of CAIS or Swyer syndrome can be made in utero by comparing a karyotype obtained by amniocentesis with the external genitalia of the fetus during a prenatal ultrasound. Many infants with CAIS do not experience the normal, spontaneous neonatal testosterone surge, a fact which can be diagnostically exploited by obtaining baseline luteinizing hormone and testosterone measurements, followed by a human chorionic gonadotropin (hGC) stimulation test.
The main differentials for CAIS are complete gonadal dysgenesis (Swyer syndrome) and Müllerian agenesis (Mayer-Rokitansky-Kuster-Hauser syndrome or MRKH). Both CAIS and Swyer syndrome are associated with a 46,XY karyotype, whereas MRKH is not; MRKH can thus be ruled out by checking for the presence of a Y chromosome, which can be done either by fluorescence in situ hybridization (FISH) analysis or on full karyotype. Swyer syndrome is distinguished by poor breast development and shorter stature. The diagnosis of CAIS is confirmed when androgen receptor (AR) gene sequencing reveals a mutation, although up to 5% of individuals with CAIS do not have an AR mutation.
Up until the 1990s, a CAIS diagnosis was often hidden from the affected individual and / or family. It is current practice to disclose the genotype at the time of diagnosis, particularly when the affected girl is at least of adolescent age. If the affected individual is a child or infant, it is generally up to the parents, often in conjunction with a psychologist, to decide when to disclose the diagnosis.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
The 2006 Consensus statement on the management of intersex disorders states that individuals with 17β-hydroxysteroid dehydrogenase III deficiency have an intermediate risk of germ cell malignancy, at 28%, recommending that gonads be monitored. A 2010 review put the risk of germ cell tumors at 17%.
The management of 17β-hydroxysteroid dehydrogenase III deficiency can consist, according to one source, of the elimination of gonads prior to puberty, in turn halting masculinization.
Hewitt and Warne state that, children with 17β-hydroxysteroid dehydrogenase III deficiency who are raised as girls often later identify as male, describing a "well known, spontaneous change of gender identity from female to male" that "occurs after the onset of puberty." A 2005 systematic review of gender role change identified the rate of gender role change as occurring in 39–64% of individuals with 17β-hydroxysteroid dehydrogenase III deficiency raised as girls.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
Treatment for KS and other forms of HH can be divided into hormone replacement therapy and fertility treatments.
Unfortunately, the number of differentials to consider for PAIS is particularly large. Prompt diagnosis is particularly urgent when a child is born with ambiguous genitalia, as some causes are associated with potentially life-threatening adrenal crises. Determination of testosterone, testosterone precursors and dihydrotestosterone (DHT) at baseline and / or after human chorionic gonadotropin (hCG) stimulation can be used to exclude such defects in androgen biosynthesis.
Approximately one half of all 46,XY individuals born with ambiguous genitalia will not receive a definitive diagnosis. Androgen receptor (AR) gene mutations cannot be found in 27% to 72% of individuals with PAIS. As a result, genetic analysis can be used to confirm a diagnosis of PAIS, but it cannot be used to rule out PAIS. Evidence of abnormal androgen binding in a genital skin fibroblast study has long been the gold standard for the diagnosis of PAIS, even when an AR mutation is not present. However, some cases of PAIS, including AR-mutant-positive cases, will show normal androgen binding. A family history consistent with X-linked inheritance is more commonly found in AR-mutant-positive cases than AR-mutant-negative cases.
The use of dynamic endocrine tests is particularly helpful in isolating a diagnosis of PAIS. One such test is the human chorionic gonadotropin (hCG) stimulation test. If the gonads are testes, there will be an increase in the level of serum testosterone in response to the hCG, regardless of testicular descent. The magnitude of the testosterone increase can help differentiate between androgen resistance and gonadal dysgenesis, as does evidence of a uterus on ultrasound examination. Testicular function can also be assessed by measuring serum anti-Müllerian hormone levels, which in turn can further differentiate PAIS from gonadal dysgenesis and bilateral anorchia.
Another useful dynamic test involves measuring the response to exogenous steroids; individuals with AIS show a decreased response in serum sex hormone binding globulin (SHBG) after a short term administration of anabolic steroids. Two studies indicate that measuring the response in SHBG after the administration of stanozolol could help to differentiate individuals with PAIS from those with other causes of ambiguous genitalia, although the response in individuals with predominantly male phenotypes overlaps somewhat with the response in normal males.
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
Hormone replacement therapy (HRT) with estrogen can be used to treat hypoestrogenism both in premenopausal and postmenopausal women.
Hormone replacement therapy with estrogen may be used to treat symptoms of hypoestrogenism in females with the condition. There are currently no known treatments for the infertility caused by the condition in either sex.
"Fertility tourism" is the practice of traveling to another country for fertility treatments. It may be regarded as a form of medical tourism. The main reasons for fertility tourism are legal regulation of the sought procedure in the home country, or lower price. In-vitro fertilization and donor insemination are major procedures involved.