Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
Diagnosis of FHM is made according to the following criteria:
- Two attacks of each of the following:
- At least one close (first or second degree) relative with FHM
- No other likely cause
Sporadic forms follow the same diagnostic criteria, with the exception of family history.
In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).
The detection of tumours specific to VHL disease is important in the disease's diagnosis. In individuals with a family history of VHL disease, one hemangioblastoma, pheochromocytoma or renal cell carcinoma may be sufficient to make a diagnosis. As all the tumours associated with VHL disease can be found sporadically, at least two tumours must be identified to diagnose VHL disease in a person without a family history.
Genetic diagnosis is also useful in VHL disease diagnosis. In hereditary VHL, disease techniques such as southern blotting and gene sequencing can be used to analyse DNA and identify mutations. These tests can be used to screen family members of those afflicted with VHL disease; "de novo" cases that produce genetic mosaicism are more difficult to detect because mutations are not found in the white blood cells that are used for genetic analysis.
Most people with the disease need laser repairs to the retina, and about 60 per cent need further surgery.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Ferner et al. give the following diagnostic criteria for Schwannomatosis:
- Definite
- Age >30 years and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- One nonvestibular schwannoma plus a first-degree relative with schwannomatosis
- Possible
- Age <30 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- Age >45 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no symptoms of 8th nerve dysfunction and no NF2, or
- Nonvestibular schwannoma and first-degree relative with schwannomatosis
- Segmental. Diagnosed as definite or possible but limited to one limb or ≤5 contiguous segments of spine.
Another set of criteria are:
- Two or more nonintradermal (cutaneous) schwannomas
- No evidence of vestibular tumor
- No known NF-2 mutation
or
- One pathologically confirmed nonvestibular schwannoma plus a first degree relative who meets the above criteria.
There is no way to reverse VHL mutations, but early recognition and treatment of specific manifestations of VHL can substantially decrease complications and improve quality of life. For this reason, individuals with VHL disease are usually screened routinely for retinal angiomas, CNS hemangioblastomas, clear-cell renal carcinomas and pheochromocytomas. CNS hemangioblastomas are usually surgically removed if they are symptomatic. Photocoagulation and cryotherapy are usually used for the treatment of symptomatic retinal angiomas, although anti-angiogenic treatments may also be an option. Renal tumours may be removed by a partial nephrectomy or other techniques such as radiofrequency ablation.
Schwannomatosis can not presently be diagnosed prenatally or in the embryo, because the gene for it has not yet been positively identified.
Diagnosis is visual with measurement of spot size. The number of spots can have clinical significance for diagnosis of associated disorders such as Neurofibromatosis type I. Greater than or equal to 6 spots of at least 5mm in diameter in pre-pubertal children and at least 15mm in post-pubertal individuals is one of the major diagnostic criteria for NF1.
Café au lait spots can be removed with lasers. Results are variable as the spots are often not completely removed or can come back after treatment. Often, a test spot is treated first to help predict the likelihood of treatment success.
Clinical evaluation and identification of characteristics papules may allow a dermatologist to diagnose Degos disease. The papules have a white center and are bordered with a red ring. After lesions begin to appear, the diagnosis for Degos disease can be supported by histological findings. Most cases will show a wedge-shaped connective tissue necoris in the deep corium. This shape is due to the blockage/occlusion of small arteries.
Individuals may be diagnosed with the benign form if only the papules are present. However, an individual may be diagnosed with the malignant form if involvement of other organs like the lungs, intestine and/or central nervous system occurs. The malignant, or systematic form of this condition may suddenly develop even after having papules present for several years. In order to quickly diagnose this shift to the malignant variant of the disease, it is important for individuals to have consistent follow-up evaluations.In these evaluations, depending on which organs are suspected to be involved, the following procedures and tests may be conducted: skin inspection, brain magnetic resonance tomography, colonoscopy, chest X-ray, and/or abdominal ultrasound.
Although there has been extensive research in the past decades on this disease, there is still no evidence based therapies for this condition. This condition is often diagnosed at an early age; usually as a teenager or young adult.
To make a specific diagnosis, intraocular fluid samples may be taken and sent for analysis. In some cases, blood or cerebrospinal fluid (CSF) are also tested. Imaging may be done to help make the diagnosis.
Syringomas can often be diagnosed clinically based on presentation, distribution patterns over the body, lack of associated symptoms and family history. A definitive diagnosis requires a skin biopsy to allow the tissue to be examined under a microscope. Histologically, syringomas have a characteristic comma ("tadpole") shaped tail of dilated, cystic eccrine ducts.
There are two types of retinitis: Retinitis pigmentosa (RP) and cytomegalovirus (CMV) retinitis. Both conditions result in the swelling and damage to the retinitis. However, the key difference in both these conditions is that Retinitis pigmentosa is a genetic eye disease that you inherit from one or both of your parents. On the other hand, CMV retinitis develops from a viral infection in the retina. Although there is no cure for this disease, there are steps you can take to protect your eyes from worsening. Supplements can slow the progression of the disease and alleviate symptoms temporarily. Research also shows that vitamin A, lutein, and omega-3 fatty acids also help alleviate symptoms.
Gradient-Echo T2WI magnetic resonance imaging (MRI) is most sensitive method for diagnosing cavernous hemangiomas. MRI is such a powerful tool for diagnosis, it has led to an increase in diagnosis of cavernous hemangiomas since the technology's advent in the 1980s. The radiographic appearance is most commonly described as "popcorn" or "mulberry"-shaped. Computed tomography (CT) scanning is not a sensitive or specific method for diagnosing cavernous hemangiomas. Angiography is typically not necessary, unless it is required to rule out other diagnoses. Additionally, biopsies can be obtained from tumor tissue for examination under a microscope. It is essential to diagnose cavernous hemangioma because treatments for this benign tumor are less aggressive than that of cancerous tumors, such as angiosarcoma. However, since MRI appearance is practically pathognomonic, biopsy is rarely needed for verification.
The diagnosis is clinical. The intraocular pressure (IOP) can be measured in the office in a conscious swaddled infant using a Tonopen or hand-held Goldmann tonometer. Usually, the IOP in normal infants is in the range of 11-14 mmHg. Buphthalmos and Haab's striae can often be seen in case of congenital glaucoma.
"FLCN" mutations are detected by sequencing in 88% of probands with Birt–Hogg–Dubé syndrome. This means that some people with the clinical diagnosis have mutations that are not detectable by current technology, or that mutations in another currently unknown gene could be responsible for a minority of cases. In addition, amplifications and deletions in exonic regions are also tested. Genetic testing can be useful to confirm the clinical diagnosis of and to provide a means of determining other at-risk individuals in a family even if they have not yet developed BHD symptoms.
The cutaneous manifestations of Birt–Hogg–Dubé were originally described as fibrofolliculomas (abnormal growths of a hair follicle), trichodiscomas (hamartomatous lesions with a hair follicle at the periphery, often found on the face), and acrochordons (skin tags). Cutaneous manifestations are confirmed by histology. Most individuals (89%) with BHD are found to have multiple cysts in both lungs, and 24% have had one or more episodes of pneumothorax. The cysts can be detected by chest CT scan. Renal tumors can manifest as multiple types of renal cell carcinoma, but certain pathological subtypes (including chromophobe, oncocytoma, and oncocytic hybrid tumors) are more commonly seen. Although the original syndrome was discovered on the basis of cutaneous findings, it is now recognized that individuals with Birt–Hogg–Dubé may only manifest the pulmonary and/or renal findings, without any skin lesions. Though these signs indicate BHD, it is only confirmed with a genetic test for FLCN mutations.
Lipomatosis is believed to be an autosomal dominant condition in which multiple lipomas are present on the body. Many discrete, encapsulated lipomas form on the trunk and extremities, with relatively few on the head and shoulders. In 1993, a genetic polymorphism within lipomas was localized to chromosome 12q15, where the HMGIC gene encodes the high-mobility-group protein isoform I-C. This is one of the most commonly found mutations in solitary lipomatous tumors but lipomas often have multiple mutations. Reciprocal translocations involving chromosomes 12q13 and 12q14 have also been observed within.
Although this condition is benign, it can sometimes be very painful depending on location of the lipomas. Some patients who are concerned with cosmetics seek removal of individual lipomas. Removal can include simple excision, endoscopic removal, or liposuction.
Other entities which are accompanied by multiple lipomas include Proteus syndrome, Cowden syndrome and related disorders due to PTEN gene mutations, benign symmetric lipomatosis (Madelung disease),Dercum's Disease, familial lipodystrophy, hibernomas, epidural steroid injections with epidural lipomatosis, and familial angiolipomatosis.
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
Wagner's syndrome has for a long time been considered a synonym for Stickler's syndrome. However, since the gene that is responsible for Wagner disease (and Erosive Vitreoretinopathie) is known (2005), the confusion has ended. For Wagner disease is the Versican gene (VCAN) located at 5q14.3 is responsible.
For Stickler there are 4 genes are known to cause this syndrome: COL2A1 (75% of Stickler cases), COL11A1 (also Marshall syndrome), COL11A2 (non-ocular Stickler) and COL9A1 (recessive Stickler).
The gene involved helps regulate how the body makes collagen, a sort of chemical glue that holds tissues together in many parts of the body. This particular collagen gene only becomes active in the jelly-like material that fills the eyeball; in Wagner's disease this "vitreous" jelly grabs too tightly to the already weak retina and pulls it away.
Where trauma is involved, only a funduscopic examination of the back of the eye (retina) is necessary to make the diagnosis. Fluoroscein angiography may show a decrease in blood flow to the areas of whiteness in the retina.
In affected individuals presenting with the ICCA syndrome, the human genome was screened with microsatellite markers regularly spaced, and strong evidence of linkage with the disease was obtained in the pericentromeric region of chromosome 16, with a maximum lod score, for D16S3133 of 6.76 at a recombination fraction of 0. The disease gene has been mapped at chromosome 16p12-q12.This linkage has been confirmed by different authors. The chromosome 16 ICCA locus shows complicated genomic architecture and the ICCA gene remains unknown.
The papules characteristic for this disease develop due to infractions, or blockages in small-medium arteries and veins. The underlying cause is unknown for this disease. Though not confirmed, some cases have shown signs of inheritance between first-degree relatives. It has been suggested that the disease has a familial inheritance pattern; it is thought to be an autosomal dominant disorder. In most cases of familial inheritance, the benign variant of the disease has been present.
Due to the lack of knowledge of the pathomechanism for this condition prevention strategies are not known. However, in order to prevent worsening of symptoms, consistent evaluations should be conducted by a physician.