Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis of clubfoot deformity is by physical examination. Typically, a newborn is examined shortly after delivery with a head to toe assessment. Examination of the lower extremity and foot reveals the deformity, which may affect one or both feet. Examination of the foot shows four components of deformity.
- First, there is a higher arch on the inside of the foot. This component of the deformity can occur without the other aspects of clubfoot deformity. In isolation, this aspect of the deformity is called cavus deformity.
- Second, the forefoot is curved inward or medially (toward the big toe). This component of the deformity can occur without the other aspects of clubfoot deformity. In isolation, this aspect of the deformity is called metatarsus adductus.
- Third, the heel is turned inward. This is a natural motion of the heel and subtalar joint, typically referred to as inversion. In clubfoot deformity, the turning in (inversion) of the heel is fixed (not passively correctable) and considered a varus deformity.
- Fourth, and finally, the ankle is pointed downward. This is a natural motion of the ankle referred to as plantar flexion. In clubfoot deformity, this position is fixed (not correctable) and is referred to as equinus deformity.
A foot that shows all four components are diagnosed as having clubfoot deformity. These four components of a clubfoot deformity can be remembered with the acronym CAVE (cavus, forefoot adductus, varus, and equinus).
The severity of the deformity can also be assessed on physical exam, but is subjective to quantify. One way to assess severity is based on the stiffness of the deformity or how much it can be corrected with manual manipulation of the foot to bring it into a corrected position. Other factors used to assess severity include the presence of skin creases in the arch and at the heel and poor muscle consistency.
In some cases, it may be possible to detect the disease prior to birth during a prenatal ultrasound. Prenatal diagnosis by ultrasound can allow parents the opportunity to get information about this condition and make plans for treatment after their baby is born.
Other testing and imaging is typically not needed. Further testing may be needed if there are concerns for other associated conditions.
Most of these conditions are self-correcting during childhood. In the worst cases, surgery may be needed. Most of the time, this involves lengthening the Achilles tendon. Less severe treatment options for pigeon toe include keeping a child from crossing his or her legs, use of corrective shoes, and casting of the foot and lower legs, which is normally done before the child reaches 12 months of age or older.
If the pigeon toe is mild and close to the center, treatment may not be necessary.
Ballet has been used as a treatment for mild cases. Dance exercises can help to bend the legs outward.
The tibia or lower leg slightly or severely twists inward when walking or standing.
Treatment is usually with some combination of the Ponseti or French methods. The Ponseti method includes the following: casting together with manipulation, cutting the Achilles tendon, and bracing. The Ponseti method has been found to be effective in correcting the problem in those under the age of two. The French method involves realignment and tapping of the foot is often effective but requires a lot of effort by caregivers. Another technique known as Kite does not appear as good. In about 20% of cases further surgery is required.
The term pes cavus encompasses a broad spectrum of foot deformities. Three main types of pes cavus are regularly described in the literature: pes cavovarus, pes calcaneocavus, and ‘pure’ pes cavus. The three types of pes cavus can be distinguished by their aetiology, clinical signs and radiological appearance.
Pes cavovarus, the most common type of pes cavus, is seen primarily in neuromuscular disorders such as Charcot-Marie-Tooth disease and, in cases of unknown aetiology, is conventionally termed ‘idiopathic’. Pes cavovarus presents with the calcaneus in varus, the first metatarsal plantarflexed, and a claw-toe deformity. Radiological analysis of pes cavus in Charcot-Marie-Tooth disease shows the forefoot is typically plantarflexed in relation to the rearfoot.
In the pes calcaneocavus foot, which is seen primarily following paralysis of the triceps surae due to poliomyelitis, the calcaneus is dorsiflexed and the forefoot is plantarflexed. Radiological analysis of pes calcaneocavus reveals a large talo-calcaneal angle.
In ‘pure’ pes cavus, the calcaneus is neither dorsiflexed nor in varus and is highly arched due to a plantarflexed position of the forefoot on the rearfoot.
A combination of any or all of these elements can also be seen in a ‘combined’ type of pes cavus that may be further categorized as flexible or rigid.
Despite various presentations and descriptions of pes cavus, not all incarnations are characterised by an abnormally high medial longitudinal arch, gait disturbances, and resultant foot pathology.
Surgical treatment is only initiated if there is severe pain, as the available operations can be difficult. Otherwise, high arches may be handled with care and proper treatment.
Suggested conservative management of patients with painful pes cavus typically involves strategies to reduce and redistribute plantar pressure loading with the use of foot orthoses and specialised cushioned footwear. Other non-surgical rehabilitation approaches include stretching and strengthening of tight and weak muscles, debridement of plantar callosities, osseous mobilization, massage, chiropractic manipulation of the foot and ankle, and strategies to improve balance. There are also numerous surgical approaches described in the literature that are aimed at correcting the deformity and rebalancing the foot. Surgical procedures fall into three main groups:
1. soft-tissue procedures (e.g. plantar fascia release, Achilles tendon lengthening, tendon transfer);
2. osteotomy (e.g. metatarsal, midfoot or calcaneal);
3. bone-stabilising procedures (e.g. triple arthrodesis).
Amniotic band syndrome is considered an accidental event and it does not appear to be genetic or hereditary, so the likelihood of it occurring in another pregnancy is remote. The cause of amnion tearing is unknown and as such there are no known preventative measures.
Amniotic band syndrome is often difficult to detect before birth as the individual strands are small and hard to see on ultrasound. Often the bands are detected indirectly because of the constrictions and swelling upon limbs, digits, etc. Misdiagnosis is also common, so if there are any signs of amniotic bands, further detailed ultrasound tests should be done to assess the severity. 3D ultrasound and MRI can be used for more detailed and accurate diagnosis of bands and the resulting damage/danger to the fetus.
Research on prenatal diagnosis has shown that a diagnosis can be made prenatally in approximately 50% of fetuses presenting arthrogryposis. It could be found during routine ultrasound scanning showing a lack of mobility and abnormal position of the foetus. Nowadays there are more options for visualization of details and structures can be seen well, like the use of 4D ultrasound. In clinic a child can be diagnosed with arthrogryposis with physical examination, confirmed by ultrasound, , or muscle biopsy.
The soft tissue envelope in congenital contractual conditions such as clasped or arthrogrypotic thumbs is often deficient in two planes, the thumb-index web and the flexor aspect of the thumb. There is often an appearance of increased skin at the base of the index finger that is part of the deformity. This tissue can be used to resurface the thumb-index web after a comprehensive release of all the tight structures to allow for a larger range of motion of the thumb. This technique is called the index rotation flap.
The flap is taken from the radial side of the index finger. It is proximally based at the distal edge of the thumb-index web. The flap is made as wide as possible, but still small enough to close with the excessive skin on the palmar side of the index finger. The flap is rotated around the tightest part of the thumb to the metacarpophalangeal joint of the thumb, allowing for a larger range of motion.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
Ankylosis or anchylosis (from Greek ἀγκύλος, bent, crooked) is a stiffness of a joint due to abnormal adhesion and rigidity of the bones of the joint, which may be the result of injury or disease. The rigidity may be complete or partial and may be due to inflammation of the tendinous or muscular structures outside the joint or of the tissues of the joint itself.
When the structures outside the joint are affected, the term "false ankylosis" has been used in contradistinction to "true ankylosis", in which the disease is within the joint. When inflammation has caused the joint-ends of the bones to be fused together, the ankylosis is termed "osseous" or complete and is an instance of synostosis. Excision of a completely ankylosed shoulder or elbow may restore free mobility and usefulness to the limb. "Ankylosis" is also used as an anatomical term, bones being said to ankylose (or anchylose) when, from being originally distinct, they coalesce, or become so joined together that no motion can take place between them.
In 2014, there was a rare case of Ankylosis, wherein a six-year old girl was able to open her mouth only a couple millimeters after one of her jaw joints got fused. Liliana Cernecca was the patient's name. She underwent a surgery at King's College Hospital in London, during which her jaw was operated on and unlocked.She was said to be one of the youngest patients to have undergone this surgery.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or birth defects. Diagnosis of distal 18q- is usually made from a blood sample. A routine chromosome analysis, or karyotype, is usually used to make the initial diagnosis, although it may also be made by microarray analysis. Increasingly, microarray analysis is also being used to clarify breakpoints. Prenatal diagnosis is possible using amniocentesis or chorionic villus sampling.
Evidence for ankylosis found in the fossil record is studied by paleopathologists, specialists in ancient disease and injury. Ankylosis has been reported in dinosaur fossils from several species, including "Allosaurus fragilis", "Becklespinax altispinax", "Poekilopleuron bucklandii", and "Tyrannosaurus rex" (including the Stan specimen).
At present, treatment for distal 18q- is symptomatic, meaning the focus is on treating the signs and symptoms of the conditions as they arise. To ensure early diagnosis and treatment, people with distal 18q- are suggested to undergo routine screenings for thyroid, hearing, and vision problems.
FNA and surgery is often not recommended, these can introduce infection and the hygroma will return larger. Donut bandage and soft bedding are key to treating. In the past it was common for veterinarians to treat hygromas by aspiration (using a syringe and drawing the fluid out) or surgically placing a drain. This can address the symptom, but does not treat the cause of the hygroma. In addition any incision at a joint can be difficult to close and may result in an open sore. Consequently, the recommended treatment of choice for most hygromas is no longer aspiration or surgery, but commercially available elbow pads made for the treatment of this condition.
Fibrous ankylosis is a fibrous connective tissue process which results in decreased range of motion. Symptoms present as bony ankylosis, in which osseous tissue fuses two bones together reducing mobility, which is why fibrous ankylosis is also known as false ankylosis.
Pathology may be the result of trauma, disease, chronic inflammation, or surgery.
Some research suggests fibrous ankylosis may precede the development of bony ankylosis
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
At present, treatment for proximal 18q- is symptomatic, meaning that the focus is on treating the signs and symptoms of the condition as they arise.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or birth defects. Diagnosis of 18p- is usually made via a blood sample. A routine chromosome analysis, or karyotype, is usually used to make the initial diagnosis, although it may also be made by microarray analysis. Increasingly, microarray analysis is also being used to clarify breakpoints. Prenatal diagnosis is possible via amniocentesis of chorionic villus sampling.
Providing bedding or other padding in the areas the animal lies down can be helpful. In addition, trauma to the joint may occur during play or other physical activities.
Evaluations by certain specialists should be performed following the initial diagnosis of Duane-radial ray syndrome. These evaluations will be used to determine the extent of the disease as well as the needs of the individual.
- Eyes - Complete eye exam by an ophthalmologist especially focusing on the extraocular movements of the eye and the structural eye defects
- Heart - evaluation by a cardiologist along with an echocardiogram and ECG
- Kidneys - Laboratory tests to check kidney function and a renal ultrasound
- Hearing
- Endocrine - evaluation for growth hormone deficit if growth retardation present
- Blood - CBC to check for thrombocytopenia and leukocytosis
- Clinical genetics consultation
MRI imaging can be used to detect whether the abducens nerve is present.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays. Diagnosis of proximal 18q is usually made via a routine chromosome analysis, although it may also be made by microarray analysis. Prenatal diagnosis is possible via amniocentesis or chorionic villus sampling. However, there have been multiple reports of missed prenatal diagnoses as the deletion can be difficult to identify on prenatal samples. In addition, small deletions within this region of the chromosome have been found in phenotypically normal individuals.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or congenital malformations. Diagnosis of tetrasomy 18p is typically made via a routine chromosome analysis from a blood sample. The diagnosis can also be made prenatally by chorionic villus sampling or amniocentesis.
Severity of tetrasomy 18p is variable. Individuals with mosaicism are typically less severely affected than non-mosaic individuals.