Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Guidelines for referral to a nephrologist vary between countries. Though most would agree that nephrology referral is required by Stage 4 CKD (when eGFR/1.73m is less than 30 ml/min; or decreasing by more than 3 ml/min/year); and may be useful at an earlier stage (e.g. CKD3) when urine albumin-to-creatinine ratio is more than 30 mg/mmol, when blood pressure is difficult to control, or when hematuria or other findings suggest either a primarily glomerular disorder or secondary disease amenable to specific treatment. Other benefits of early nephrology referral include proper patient education regarding options for renal replacement therapy as well as pre-emptive transplantation, and timely workup and placement of an arteriovenous fistula in those patients opting for future hemodialysis
Screening those who have neither symptoms nor risk factors for CKD is not recommended. Those who should be screened include: those with hypertension or history of cardiovascular disease, those with diabetes or marked obesity, those aged > 60 years, subjects with indigenous racial origin, those with a history of kidney disease in the past and subjects who have relatives who had kidney disease requiring dialysis. Screening should include calculation of estimated GFR from the serum creatinine level, and measurement of urine albumin-to-creatinine ratio (ACR) in a first-morning urine specimen (this reflects the amount of a protein called albumin in the urine), as well as a urine dipstick screen for hematuria. The GFR (glomerular filtration rate) is derived from the serum creatinine and is proportional to 1/creatinine, i.e. it is a reciprocal relationship (the higher the creatinine, the lower the GFR). It reflects one aspect of kidney function: how efficiently the glomeruli (filtering units) work. But as they make up <5% of the mass of the kidney, the GFR does not indicate all aspects of kidney health and function. This can be done by combining the GFR level with the clinical assessment of the patient (especially fluid state) and measuring the levels of hemoglobin, potassium, phosphate and parathyroid hormone (PTH). Normal GFR is 90-120 mLs/min. The units of creatinine vary from country to country.
Chronic kidney failure is measured in five stages, which are calculated using a patient’s GFR, or glomerular filtration rate. Stage 1 CKD is mildly diminished renal function, with few overt symptoms. Stages 2 and 3 need increasing levels of supportive care from their medical providers to slow and treat their renal dysfunction. Patients in stages 4 and 5 usually require preparation of the patient towards active treatment in order to survive. Stage 5 CKD is considered a severe illness and requires some form of renal replacement therapy (dialysis) or kidney transplant whenever feasible.
- Glomerular filtration rate
A normal GFR varies according to many factors, including sex, age, body size and ethnic background. Renal professionals consider the glomerular filtration rate (GFR) to be the best overall index of kidney function. The National Kidney Foundation offers an easy to use on-line GFR calculator for anyone who is interested in knowing their glomerular filtration rate. (A serum creatinine level, a simple blood test, is needed to use the calculator.)
The deterioration of kidney function may be signaled by a measurable decrease in urine output. Often, it is diagnosed on the basis of blood tests for substances normally eliminated by the kidney: urea and creatinine. Additionally, the ratio of BUN to creatinine is used to evaluate kidney injury. Both tests have their disadvantages. For instance, it takes about 24 hours for the creatinine level to rise, even if both kidneys have ceased to function. A number of alternative markers has been proposed (such as NGAL, KIM-1, IL18 and cystatin C), but none of them is currently established enough to replace creatinine as a marker of kidney function.
Once the diagnosis of AKI is made, further testing is often required to determine the underlying cause. It is useful to perform a bladder scan or a post void residual to rule out urinary retention. In post void residual, a catheter is inserted into the urinary tract immediately after urinating to measure fluid still in the bladder. 50–100 ml suggests neurogenic bladder dysfunction.
These may include urine sediment analysis, renal ultrasound and/or kidney biopsy. Indications for kidney biopsy in the setting of AKI include the following:
1. Unexplained AKI, in a patient with two non-obstructed normal sized kidneys
2. AKI in the presence of the nephritic syndrome
3. Systemic disease associated with AKI
4. Kidney transplant dysfunction
In medical imaging, the acute changes in the kidney are often examined with renal ultrasonography as the first-line modality, where CT scan and magnetic resonance imaging (MRI) are used for the follow-up examinations and when US fails to demonstrate abnormalities. In evaluation of the acute changes in the kidney, the echogenicity of the renal structures, the delineation of the kidney, the renal vascularity, kidney size and focal abnormalities are observed. CT is preferred in renal traumas, but US is used for follow-up, especially in the patients suspected for the formation of urinomas. A CT scan of the abdomen will also demonstrate bladder distension or hydronephrosis. However, in AKI, the use of IV contrast is contraindicated as the contrast agent used is nephrotoxic.
The "RIFLE criteria", proposed by the Acute Dialysis Quality Initiative (ADQI) group, aid in assessment of the severity of a person's acute kidney injury. The acronym RIFLE is used to define the spectrum of progressive kidney injury seen in AKI:
- Risk: 1.5-fold increase in the serum creatinine, or glomerular filtration rate (GFR) decrease by 25 percent, or urine output <0.5 mL/kg per hour for six hours.
- Injury: Two-fold increase in the serum creatinine, or GFR decrease by 50 percent, or urine output <0.5 mL/kg per hour for 12 hours
- Failure: Three-fold increase in the serum creatinine, or GFR decrease by 75 percent, or urine output of <0.3 mL/kg per hour for 24 hours, or no urine output (anuria) for 12 hours
- Loss: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than four weeks
- End-stage kidney disease: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than three months
Before the advancement of modern medicine, renal failure was often referred to as uremic poisoning. Uremia was the term for the contamination of the blood with urine. It is the presence of an excessive amount of urea in blood. Starting around 1847, this included reduced urine output, which was thought to be caused by the urine mixing with the blood instead of being voided through the urethra. The term "uremia" is now used for the illness accompanying kidney failure.
The standard diagnostic workup of suspected kidney disease is history & examination, as well as a urine test strip. Also, renal ultrasonography is essential in the diagnosis and management of kidney-related diseases.
Nephrocalcinosis is diagnosed for the most part by imaging techniques. The imagings used are ultrasound (US), abdominal plain film and CT imaging. Of the 3 techniques CT and US are the more preferred. Nephrocalcinosis is considered present if at least two radiologists make the diagnosis on US and/or CT. In some cases a renal biopsy is done instead if imaging is not enough to confirm nephrocalcinosis. Once the diagnosis is confirmed additional testing is needed to find the underlying cause because the underlying condition may require treatment for reasons independent of nephrocalcinosis. These additional tests will measure serum, electrolytes, calcium, and phosphate, and the urine pH. If no underlying cause can be found then urine collection should be done for 24 hours and measurements of the excretion of calcium, phosphate, oxalate, citrate, and creatinine are looked at.
Patients will require dialysis to compensate for the function of their kidneys.
Polycystic kidney disease can be ascertained via a CT scan of abdomen, as well as, an MRI and ultrasound of the same area. A physical exam/test can reveal enlarged liver, heart murmurs and elevated blood pressure
Patients at risk for acute uric acid nephropathy can be given allopurinol or rasburicase (a recombinant urate oxidase) prior to treatment with cytotoxic drugs.
Increasing fluid intake to yield a urine output of greater than 2 liters a day can be advantageous for all patients with nephrocalcinosis. Patients with hypercalciuria can reduce calcium excretion by restricting animal protein, limiting sodium intake to less than 100 meq a day and being lax of potassium intake. If changing ones diet alone does not result in an suitable reduction of hypercalciuria, a thiazide diuretic can be administered in patients who do not have hypercalcemia. Citrate can increase the solubility of calcium in urine and limit the development of nephrocalcinosis. Citrate is not given to patients who have urine pH equal to or greater than 7.
ADPKD individuals might have a normal life; conversely, ARPKD can cause kidney dysfunction and can lead to kidney failure by the age of 40-60. ADPKD1 and ADPKD2 are very different, in that ADPKD2 is much milder.
Currently, there are no therapies proven effective to prevent the progression of polycystic kidney disease (autosomal dominant).
Millions of people across the world suffer from kidney disease. Of those millions, several thousand will eventually or do need kidney transplants. Out of those millions in the world, 16,500 in the United States needed a kidney transplant in 2008. Of those 16,500 people, 5,000 died while waiting for a transplant. Currently, there is a shortage of donors, and in 2007 there were only 64,606 kidney transplants in the world. This shortage of donors is causing countries to place monetary value on kidneys. Countries such as Iran and Singapore are eliminating their lists by paying their citizens to donate. Also, the black market accounts for 5-10 percent of transplants that occur worldwide. The act of buying an organ through the black market is illegal in the United States. To be put on the waiting list for a kidney transplant, patients must first be referred by a physician, then they must choose and contact a donor hospital. Once they choose a donor hospital, patients must then receive an evaluation to make sure they are sustainable to receive a transplant. In order to be a match for a kidney transplant, patients must match blood type and human leukocyte antigen factors with their donors. They must also have no reactions to the antibodies from the donor’s kidneys.
Biochemical blood tests determine the amount of typical markers of renal function in the blood serum, for instance serum urea and serum creatinine. Biochemistry can also be used to determine serum electrolytes. Special biochemical tests (arterial blood gas) can determine the amount of dissolved gases in the blood, indicating if pH imbalances are acute or chronic.
Urinalysis is a test that studies urine for abnormal substances such as protein or signs of infection.
- A Full Ward Test, also known as dipstick urinalysis, involves the dipping of a biochemically active test strip into the urine specimen to determine levels of tell-tale chemicals in the urine.
- Urinalysis can also involve MC&S microscopy, culture and sensitivity
Urodynamic tests evaluate the storage of urine in the bladder and the flow of urine from the bladder through the urethra. It may be performed in cases of incontinence or neurological problems affecting the urinary tract.
Ultrasound is commonly performed to investigate problems of the kidney and/or urinary tract.
Radiology:
- KUB is plain radiography of the urinary system, e.g. to identify kidney stones.
- An intravenous pyelogram studies the shape of the urinary system.
- CAT scans and MRI can also be useful in localising urinary tract pathology.
- A voiding cystogram is a functional study where contrast "dye" is injected through a catheter into the bladder. Under x-ray the radiologist asks the patient to void (usually young children) and will watch the contrast exiting the body on the x-ray monitor. This examines the child's bladder and lower urinary tract. Typically looking for vesicoureteral reflux, involving urine backflow up into the kidneys.
Prompt treatment of some causes of azotemia can result in restoration of kidney function; delayed treatment may result in permanent loss of renal function. Treatment may include hemodialysis or peritoneal dialysis, medications to increase cardiac output and increase blood pressure, and the treatment of the condition that caused the azotemia.
While the only diagnostic "gold standard" mechanism of diagnosis en vivo is via kidney biopsy, the clinical conditions and blood clotting disorder often associated with this disease may make it impractical in a clinical setting. Alternatively, it is diagnosed clinically, or at autopsy, with some authors suggesting diagnosis by contrast enhanced CT.
A detailed and accurate history and physical will help determine if uremia is acute or chronic. In the cases of acute uremia, causes may be identified and eliminated, leading to higher chance for recovery of normal renal function, if treated correctly.
Nephrotoxicity is usually monitored through a simple blood test. A decreased creatinine clearance indicates poor renal function. Normal creatinine level is between 80 - 120 μmol/L. In interventional radiology, a patient's creatinine clearance levels are all checked prior to a procedure.
Serum creatinine is another measure of renal function, which may be more useful clinically when dealing with patients with early kidney disease.
Individuals with renal papillary necrosis due to excess use of analgesic have an elevated risk of epithelial tumors, hence a urine cytology exam is useful. In terms of imaging this condition can be identified by retrograde pyelography (RGP). The diagnosis of renal papillary necrosis is therefore done via:
A 24-hour urine collection for determination of creatinine clearance may be an alternative, although not a very accurate test due to the collection procedure. Another laboratory test that should be considered is urinalysis with microscopic examination for the presence of protein, casts, blood and pH.
As the majority of individuals with hepatorenal syndrome have cirrhosis, much of the epidemiological data on HRS comes from the cirrhotic population. The condition is quite common: approximately 10% of individuals admitted to hospital with ascites have HRS. A retrospective case series of cirrhotic patients treated with terlipressin suggested that 20.0% of acute kidney failure in cirrhotics was due to type 1 HRS, and 6.6% was due to type 2 HRS. It is estimated that 18% of individuals with cirrhosis and ascites will develop HRS within one year of their diagnosis with cirrhosis, and 39% of these individuals will develop HRS within five years of diagnosis. Three independent risk factors for the development of HRS in cirrhotics have been identified: liver size, plasma renin activity, and serum sodium concentration.
The prognosis of these patients is grim with untreated patients having an extremely short survival. The severity of liver disease (as evidenced by the MELD score) has been shown to be a determinant of outcome. Some patients without cirrhosis develop HRS, with an incidence of about 20% seen in one study of ill patients with alcoholic hepatitis.
Treatment of renal papillary necrosis is supportive, any obstruction (urethral) can be dealt with via stenting. This condition is not linked to a higher possibility of renal failure. Control of infection is important, thus antimicrobial treatment is begun, so as to avert surgery (should the infection not respond).
Treatment is focused on preventing deposition of uric acid within the urinary system by increasing urine volume with potent diuretics such as furosemide. Raising the urinary pH to a level higher than 7 (alkalinization) is often difficult to attain, although sodium bicarbonate and/or acetazolamide are sometimes used in an attempt to increase uric acid solubility.
Dialysis (preferably hemodialysis) is started if the above measures fail.
The risk of death in hepatorenal syndrome is very high; consequently, there is a significant emphasis on the identification of patients who are at risk for HRS, and prevention of triggers for onset of HRS. As infection (specifically spontaneous bacterial peritonitis) and gastrointestinal hemorrhage are both complications in individuals with cirrhosis, and are common triggers for HRS, specific care is made in early identification and treatment of cirrhotics with these complications to prevent HRS. Some of the triggers for HRS are induced by treatment of ascites and can be preventable. The aggressive use of diuretic medications should be avoided. In addition, many medications that are either used to treat cirrhotic complications (such as some antibiotics) or other conditions may cause sufficient impairment in kidney function in the cirrhotic to lead to HRS. Also, large volume paracentesis—which is the removal of ascites fluid from the abdomen using a needle or catheter in order to relieve discomfort—may cause enough alteration in hemodynamics to precipitate HRS, and should be avoided in individuals at risk. The concomitant infusion of albumin can avert the circulatory dysfunction that occurs after large-volume paracentesis and may prevent HRS. Conversely, in individuals with very tense ascites, it has been hypothesized that removal of ascitic fluid may improve kidney function if it decreases the pressure on the renal veins.
Individuals with ascites that have become infected spontaneously (termed spontaneous bacterial peritonitis or SBP) are at an especially high risk for the development of HRS. In individuals with SBP, one randomized controlled trial found that the administration of intravenous albumin on the day of admission and on the third day in hospital reduced both the rate of kidney insufficiency and the mortality rate.