Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Once the diagnosis of polymicrogyria has been established in an individual, the following approach can be used for discussion of prognosis:
A pregnancy history should be sought, with particular regard to infections, trauma, multiple gestations, and other documented problems. Screening for the common congenital infections associated with polymicrogyria with standard TORCH testing may be appropriate. Other specific tests targeting individual neurometabolic disorders can be obtained if clinically suggested.
The following may help in determining a genetic etiology:
Family history
It is important to ask for the presence of neurologic problems in family members, including seizures, cognitive delay, motor impairment, pseudobulbar signs, and focal weakness because many affected family members, particularly those who are older, may not have had MRI performed, even if these problems came to medical attention. In addition, although most individuals with polymicrogyria do present with neurologic difficulties in infancy, childhood, or adulthood, those with mild forms may have no obvious deficit or only minor manifestations, such as a simple lisp or isolated learning disability. Therefore, if a familial polymicrogyria syndrome is suspected, it may be reasonable to perform MRI on relatives who are asymptomatic or have what appear to be minor findings. The presence of consanguinity in a child's parents may suggest an autosomal recessive familial polymicrogyria syndrome.
Physical examination
A general physical examination of the proband may identify associated craniofacial, musculoskeletal, or visceral malformations that could indicate a particular syndrome. Neurologic examination should assess cognitive and mental abilities, cranial nerve function, motor function, deep tendon reflexes, sensory function, coordination, and gait (if appropriate).
Genetic testing
A thorough medical history and physical examination, including a neurological examination, are the first steps in making a diagnosis. This alone may be sufficient to diagnose Bell's Palsy, in the absence of other findings. Additional investigations may be pursued, including blood tests such as ESR for inflammation, and blood sugar levels for diabetes. If other specific causes, such as sarcoidosis or Lyme disease are suspected, specific tests such as angiotensin converting enzyme levels, chest x-ray or Lyme titer may be pursued. If there is a history of trauma, or a tumour is suspected, a CT scan may be used.
The diagnosis is based on the combination of unusual facial features and the dysplastic or absent femurs.
Diagnosis may be made antenatally.
Very few risk factors for choanal atresia have been identified. While causes are unknown, both genetic and environmental triggers are suspected. One study suggests that chemicals that act as endocrine disrupters may put an unborn infant at risk. A 2012 epidemiological study looked at atrazine, a commonly used herbicide in the U.S., and found that women who lived in counties in Texas with the highest levels of this chemical being used to treat agricultural crops were 80 times more likely to give birth to infants with choanal atresia or stenosis compared to women who lived in the counties with the lowest levels. Another epidemiological report in 2010 found even higher associations between increased incidents of choanal atresia and exposure to second-hand-smoke, coffee consumption, high maternal zinc and B-12 intake and exposure to anti-infective urinary tract medications.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
Diagnosis commonly occurs later in childhood and often occurs incidentally in asymptomatic patients or as a cause of visual impairment. The first symptoms are commonly found during routine vision screenings.
A number of examinations can be used to determine the extent of the syndrome and its severity. Fluorescein angiography is quite useful in diagnosing the disease, and the use of ultrasonography and optical coherence tomography (OCT) are helpful in confirming the disease. Neuro-ophthalmic examinations reveal pupillary defects (see Marcus Gunn Pupil). Funduscopic examinations, examinations of the fundus of the eye, allow detection of arteriovenous malformations. Neurological examinations can determine hemiparesis and paresthesias. Malformations in arteriovenous connections and irregular functions in the veins may be distinguished by fluorescein angiographies. Cerebral angiography examinations may expose AVMs in the cerebrum. MRIs are also used in imaging the brain and can allow visualization of the optic nerve and any possible atrophy. MRI, CT, and cerebral angiography are all useful for investigating the extent and location of any vascular lesions that are affecting the brain. This is helpful in determining the extent of the syndrome.
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Facial nerve paralysis may be divided into supranuclear and infranuclear lesions.
There is no known specific treatment for this condition. Management is supportive.
Choanal atresia can be suspected if it is impossible to insert a nasal catheter.
Also, if one notices a continuous stream of mucus draining from one or both nostrils, it could be a sign of an atresia. Another common sign is cyanosis in an infant while breast feeding, as breathing is dependent on nasal patency in this situation.
Diagnosis is confirmed by radiological imaging, usually CT scan.
Bilateral vestibular schwannomas are diagnostic of NF2.
NF II can be diagnosed with 65% accuracy prenatally with chorionic villus sampling or amniocentesis.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
The treatment for Bonnet–Dechaume–Blanc syndrome is controversial due to a lack of consensus on the different therapeutic procedures for treating arteriovenous malformations. The first successful treatment was performed by Morgan et al. They combined intracranial resection, ligation of ophthalmic artery, and selective arterial ligature of the external carotid artery, but the patient did not have retinal vascular malformations.
If lesions are present, they are watched closely for changes in size. Prognosis is best when lesions are less than 3 cm in length. Most complications occur when the lesions are greater than 6 cm in size. Surgical intervention for intracranial lesions has been done successfully. Nonsurgical treatments include embolization, radiation therapy, and continued observation. Arterial vascular malformations may be treated with the cyberknife treatment. Possible treatment for cerebral arterial vascular malformations include stereotactic radiosurgery, endovascular embolization, and microsurgical resection.
When pursuing treatment, it is important to consider the size of the malformations, their locations, and the neurological involvement. Because it is a congenital disorder, there are not preventative steps to take aside from regular follow ups with a doctor to keep an eye on the symptoms so that future complications are avoided.
Individuals with CAVD can reproduce with the assistance of modern technology with a combination of testicular sperm extraction and intracytoplasmic sperm injection (ICSI). However, as the risk of either cystic fibrosis or renal agenesis is likely to be higher in the children, genetic counseling is generally recommended.
THS is usually diagnosed via exclusion, and as such a vast amount of laboratory tests are required to rule out other causes of the patient's symptoms. These tests include a complete blood count, thyroid function tests and serum protein electrophoresis. Studies of cerebrospinal fluid may also be beneficial in distinguishing between THS and conditions with similar signs and symptoms.
MRI scans of the brain and orbit with and without contrast, magnetic resonance angiography or digital subtraction angiography and a CT scan of the brain and orbit with and without contrast may all be useful in detecting inflammatory changes in the cavernous sinus, superior orbital fissure and/or orbital apex. Inflammatory change of the orbit on cross sectional imaging in the absence of cranial nerve palsy is described by the more benign and general nomenclature of orbital pseudotumor.
Sometimes a biopsy may need to be obtained to confirm the diagnosis, as it is useful in ruling out a neoplasm.
Differentials to consider when diagnosing THS include craniopharyngioma, migraine and meningioma.
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
The majority of patients remain symptom free and able to maintain binocularity with only a slight face turn. Amblyopia is uncommon and, where present, rarely dense. This can be treated with occlusion, and any refractive error can also be corrected.
Duane syndrome cannot be cured, as the "missing" cranial nerve cannot be replaced, and traditionally there has been no expectation that surgery will result in any increase in the range of eye movement. Surgical intervention, therefore, has only been recommended where the patient is unable to maintain binocularity, where they are experiencing symptoms, or where they are forced to adopt a cosmetically unsightly or uncomfortable head posture in order to maintain binocularity. The aims of surgery are to place the eye in a more central position and, thus, place the field of binocularity more centrally also, and to overcome or reduce the need for the adoption of an abnormal head posture. Occasionally, surgery is not needed during childhood, but becomes appropriate later in life, as head position changes (presumably due to progressive muscle contracture).
Surgical approaches include:
- Medial rectus recession in the involved eye or both eyes. By weakening the medial rectus muscles this procedure improves the crossed-eye appearance but does not improve outward eye movements (abductions).
- Morad et al. showed improved abduction after modest unilateral medial rectus recession and lateral rectus resection in a subgroup of patients with mild eye retraction and good adduction before surgery.
- Lateral transposition of the vertical muscles described by Rosenbaum has been shown to improve range of movement of the eye. The surgical procedure produces 40-65 degrees of binocular field. Orbital wall fixation of the lateral rectus muscle (muscle is disinserted and reattached to lateral orbital wall) is recommended an effective method to inactivate a lateral rectus muscle in cases of marked anomalous innervation and severe cocontraction.
The gene for Darwin's tubercle was once thought to be inherited in an autosomal dominant pattern with incomplete penetrance, meaning that those who possess the allele (version of a gene) will not necessarily present with the phenotype. However, genetic and family studies have demonstrated that the presence of Darwin's Tubercle may be more likely to be influenced by one's environment or developmental accidents than it is by genetics alone. There is no clear argument for whether the trait has significance in sexual dimorphism studies or age related studies. In some studies, there is clear data that Darwin's tubercle is not associated with sex. In contrast, others indicate that there is a correlation with sexual dimorphism between men and women, where men tend to have the tubercle more than women in some populations. Two studies indicate that older men tend to have greater expression of Darwin's tubercle than do older women.
There are at least four types of FFDD:
- Type I: autosomal dominant FFDD
- Type II: autosomal recessive FFDD
- Type III: FFDD with other facial features
- Type IV: facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. Autosomal recessive.
Differential diagnosis is rarely difficult in adults. Onset is typically sudden with symptoms of horizontal diplopia. Limitations of eye movements are confined to abduction of the affected eye (or abduction of both eyes if bilateral) and the size of the resulting convergent squint or esotropia is always larger on distance fixation - where the lateral rectii are more active - than on near fixation - where the medial rectii are dominant. Abduction limitations which mimic VIth nerve palsy may result secondary to surgery, to trauma or as a result of other conditions such as myasthenia gravis or thyroid eye disease.
In children, differential diagnosis is more difficult because of the problems inherent in getting infants to cooperate with a full eye movement investigation. Possible alternative diagnosis for an abduction deficit would include:
1. Mobius syndrome - a rare congenital disorder in which both VIth and VIIth nerves are bilaterally affected giving rise to a typically 'expressionless' face.
2. Duane's syndrome - A condition in which both abduction and adduction are affected arising as a result of partial innervation of the lateral rectus by branches from the IIIrd oculomotor cranial nerve.
3. Cross fixation which develops in the presence of infantile esotropia or nystagmus blockage syndrome and results in habitual weakness of lateral rectii.
4. Iatrogenic injury. Abducens nerve palsy is also known to occur with halo orthosis placement.The resultant palsy is identified through loss of lateral gaze after application of the orthosis and is the most common cranial nerve injury associated with this device.
A neuro-ophthalmologist is usually involved in the diagnosis and management of KSS. An individual should be suspected of having KSS based upon clinical exam findings. Suspicion for myopathies should be increased in patients whose ophthalmoplegia does not match a particular set of cranial nerve palsies (oculomotor nerve palsy, fourth nerve palsy, sixth nerve palsy). Initially, imaging studies are often performed to rule out more common pathologies. Diagnosis may be confirmed with muscle biopsy, and may be supplemented with PCR determination of mtDNA mutations.
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Enlarged vestibular aqueducts are commonly picked up after newborn hearing screen when a child is identified as having a hearing loss. The hearing loss is commonly mixed and can be of any degree when first identified. The conductive component is due to a third window effect caused by the widened vestibular aqueduct.
Identification of the enlarged vestibular aqueduct in a child is usually by MRI scan which identifies the fluid within the endolymphatic duct and sac. CT scan may be needed to see the vestibular aqueduct clearly. In adults CT scan may be the first investigation.
In order to diagnose the cause of the enlarged vestibular aqueduct the physician will need a detailed family history, full examination to include vestibular examination and, if a bilateral finding, molecular genetic testing as appropriate. With unilateral enlarged vestibular aqueducts molecular genetic testing is currently not recommended.