Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
"Campylobacter" organisms can be detected by performing a Gram stain of a stool sample with high specificity and a sensitivity of ~60%, but are most often diagnosed by stool culture. Fecal leukocytes should be present and indicate the diarrhea to be inflammatory in nature. Methods currently being developed to detect the presence of campylobacter organisms include antigen testing via an EIA or PCR.
Bacteremia is most commonly diagnosed by blood culture, in which a sample of blood drawn from the vein by needle puncture is allowed to incubate with a medium that promotes bacterial growth. If bacteria are present in the bloodstream at the time the sample is obtained, the bacteria will multiply and can thereby be detected.
Any bacteria that incidentally find their way to the culture medium will also multiply. For example, if the skin is not adequately cleaned before needle puncture, contamination of the blood sample with normal bacteria that live on the surface of the skin can occur. For this reason, blood cultures must be drawn with great attention to sterile process. The presence of certain bacteria in the blood culture, such as S"taphylococcus aureus", "Streptococcus pneumoniae", and "Escherichia coli" almost never represent a contamination of the sample. On the other hand, contamination may be more highly suspected if organisms like "Staphylococcus epidermidis" or "Propionibacterium acnes" grow in the blood culture.
Two blood cultures drawn from separate sites of the body are often sufficient to diagnose bacteremia. Two out of two cultures growing the same type of bacteria usually represents a real bacteremia, particularly if the organism that grows is not a common contaminant. One out of two positive cultures will usually prompt a repeat set of blood cultures to be drawn to confirm whether a contaminant or a real bacteremia is present. The patient's skin is typically cleaned with an alcohol-based product prior to drawing blood to prevent contamination. Blood cultures may be repeated at intervals to determine if persistent — rather than transient — bacteremia is present.
Prior to drawing blood cultures, a thorough patient history should be taken with particular regard to presence of both fevers and chills, other focal signs of infection such as in the skin or soft tissue, a state of immunosuppression, or any recent invasive procedures.
Ultrasound of the heart is recommended in all those with bacteremia due to "Staphylococcus aureus" to rule out infectious endocarditis.
The World Health Organization recommends the following:
- Food should be properly cooked and hot when served.
- Consume only pasteurized or boiled milk and milk products, never raw milk products.
- Make sure that ice is from safe water.
- If you are not sure of the safety of drinking water, boil it, or disinfect it with chemical disinfectant.
- Wash hands thoroughly and frequently with soap, especially after using the toilet and after contact with pets and farm animals.
- Wash fruits and vegetables thoroughly, especially if they are to be eaten raw. Peel fruits and vegetables whenever possible.
- Food handlers, professionals and at home, should observe hygienic rules during food preparation.
- Professional food handlers should immediately report to their employer any fever, diarrhea, vomiting or visible infected skin lesions.
The diagnosis of bacterial overgrowth can be made by physicians in various ways. Malabsorption can be detected by a test called the "D-xylose" test. Xylose is a sugar that does not require enzymes to be digested. The D-xylose test involves having a patient drink a certain quantity of D-xylose, and measuring levels in the urine and blood; if there is no evidence of D-xylose in the urine and blood, it suggests that the small bowel is not absorbing properly (as opposed to problems with enzymes required for digestion).
The gold standard for detection of bacterial overgrowth is the aspiration of more than 10 bacteria per millilitre from the small bowel. The normal small bowel has less than 10 bacteria per millilitre. Some experts however, consider aspiration of more than 10 positive if the flora is predominately colonic type bacteria as these types of bacteria are considered pathological in excessive numbers in the small intestine. The reliability of aspiration in the diagnosis of SIBO has been questioned as SIBO can be patchy and the reproducibility can be as low as 38 percent. Breath tests have their own reliability problems with a high rate of false positive. Some doctors factor in a patients' response to treatment as part of the diagnosis.
Breath tests have been developed to test for bacterial overgrowth, based on bacterial metabolism of carbohydrates to hydrogen and/or methane, or based on the detection of by-products of digestion of carbohydrates that are not usually metabolized. The hydrogen breath test involves having the patient fast for a minimum of 12 hours then having them drink a substrate usually glucose or lactulose, then measuring expired hydrogen and methane concentrations typically over a period of 2–3 hours. It compares well to jejunal aspirates in making the diagnosis of bacterial overgrowth. C and C based tests have also been developed based on the bacterial metabolism of D-xylose. Increased bacterial concentrations are also involved in the deconjugation of bile acids. The glycocholic acid breath test involves the administration of the bile acid C glychocholic acid, and the detection of CO, which would be elevated in bacterial overgrowth.
Some patients with symptoms of bacterial overgrowth will undergo gastroscopy, or visualization of the stomach and duodenum with an endoscopic camera. Biopsies of the small bowel in bacterial overgrowth can mimic those of celiac disease, making the diagnosis more challenging. Findings include blunting of villi, hyperplasia of crypts and an increased number of lymphocytes in the lamina propria.
However, some physicians suggest that if the suspicion of bacterial overgrowth is high enough, the best diagnostic test is a trial of treatment. If the symptoms improve, an empiric diagnosis of bacterial overgrowth can be made.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.
Some studies reported up to 80% of patients with irritable bowel syndrome (IBS) have SIBO (using the hydrogen breath test). Subsequent studies demonstrated statistically significant reduction in IBS symptoms following therapy for SIBO.
There is a lack of consensus however, regarding the suggested link between IBS and SIBO. Other authors concluded that the abnormal breath results so common in IBS patients do not suggest SIBO, and state that "abnormal fermentation timing and dynamics of the breath test findings support a role for abnormal intestinal bacterial distribution in IBS." There is general consensus that breath tests are abnormal in IBS; however, the disagreement lies in whether this is representative of SIBO. More research is needed to clarifiy this possible link.
A clinical diagnosis may be made by taking a history and doing a brief examination. Treatment is usually started without or before confirmation by laboratory analysis.
Enteroinvasive "Escherichia coli" (EIEC) is a type of pathogenic bacteria whose infection causes a syndrome that is identical to shigellosis, with profuse diarrhea and high fever. EIEC are highly invasive, and they use adhesin proteins to bind to and enter intestinal cells. They produce no toxins, but severely damage the intestinal wall through mechanical cell destruction.
It is closely related to "Shigella".
After the "E. coli" strain penetrates through the epithelial wall, the endocytosis vacuole gets lysed, the strain multiplies using the host cell machinery, and extends to the adjacent epithelial cell. In addition, the plasmid of the strain carries genes for a type III secretion system that is used as the virulent factor. Although it is an invasive disease, the invasion usually does not pass the submucosal layer. The similar pathology to shigellosis may be because both strains of bacteria share some virulent factors. The invasion of the cells can trigger a mild form of diarrhea or dysentery, often mistaken for dysentery caused by "Shigella" species. The illness is characterized by the appearance of blood and mucus in the stools of infected individuals or a condition called colitis.
Dysentery caused by EIEC usually occurs within 12 to 72 hours following the ingestion of contaminated food. The illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise. Dysentery caused by this organism is generally self-limiting with no known complications.
Enterovirulent classes of "E. coli" are referred to as the EEC group (enterovirulent "E. coli"):
1. Enteroinvasive "E. coli" (EIEC) invades (passes into) the intestinal wall to produce severe diarrhea.
2. Enterohemorrhagic "E. coli" (EHEC): A type of EHEC, "E. coli" 0157:H7, can cause bloody diarrhea and hemolytic uremic syndrome (anemia and kidney failure).
3. Enterotoxigenic "E. coli" (ETEC) produces a toxin that acts on the intestinal lining, and is the most common cause of traveler's diarrhea.
4. Enteropathogenic "E. coli" (EPEC) can cause diarrhea outbreaks in newborn nurseries.
5. Enteroaggregative "E. coli" (EAggEC) can cause acute and chronic (long-lasting) diarrhea in children.
It is currently unknown what foods may harbor EIEC, but any food contaminated with human feces from an ill individual, either directly or via contaminated water, could cause disease in others. Outbreaks have been associated with hamburger meat and unpasteurized milk.
Cultures of stool samples are examined to identify the organism causing dysentery. Usually, several samples must be obtained due to the number of amoebae, which changes daily. Blood tests can be used to measure abnormalities in the levels of essential minerals and salts.
A lumbar puncture (LP) is necessary to diagnose meningitis. Cerebrospinal fluid (CSF) culture is the most important study for the diagnosis of neonatal bacterial meningitis because clinical signs are non-specific and unreliable. Blood cultures may be negative in 15-55% of cases, deeming it unreliable as well. However, a CSF/blood glucose ratio below two-thirds has a strong relationship to bacterial meningitis. A LP should be done in all neonates with suspected meningitis, with suspected or proven sepsis (whole body inflammation) and should be considered in all neonates in whom sepsis is a possibility. The role of the LP in neonates who are healthy appearing but have maternal risk factors for sepsis is more controversial; the yield of the LP in these patients may be low.
Early-onset is deemed when infection is within one week of birth. Late-onset is deemed after the first week.
Babies born from mothers with symptoms of Herpes Simplex Virus (HSV) should be tested for viral infection. Liver tests, complete blood count (CBC), cerebrospinal fluid analyses, and chest X-ray should all be completed to diagnose meningitis. Samples should be taken from skin, conjunctiva (eye), mouth and throat, rectum, urine, and the CSF for viral culture and PCR analysis with respect to the sample from CSF.
Neonatal sepsis screening:
1. DLC (differential leukocyte count) showing increased numbers of polymorphs.
2. DLC: band cells > 20%.
3. increased haptoglobins.
4. micro ESR (Erythrocyte Sedimentation Rate) titer > 15mm.
5. gastric aspirate showing > 5 polymorphs per high power field.
6. newborn CSF (Cerebrospinal fluid) screen: showing increased cells and proteins.
7. suggestive history of chorioamnionitis, PROM (Premature rupture of membranes), etc...
Culturing for microorganisms from a sample of CSF, blood or urine, is the gold standard test for definitive diagnosis of neonatal sepsis. This can give false negatives due to the low sensitivity of culture methods and because of concomitant antibiotic therapy. Lumbar punctures should be done when possible as 10-15% presenting with sepsis also have meningitis, which warrants an antibiotic with a high CSF penetration.
CRP is not very accurate in picking up cases.
To date, no licensed vaccines specifically target ETEC, though several are in various stages of development. Studies indicate that protective immunity to ETEC develops after natural or experimental infection, suggesting that vaccine-induced ETEC immunity should be feasible and could be an effective preventive strategy. Prevention through vaccination is a critical part of the strategy to reduce the incidence and severity of diarrheal disease due to ETEC, particularly among children in low-resource settings. The development of a vaccine against this infection has been hampered by technical constraints, insufficient support for coordination, and a lack of market forces for research and development. Most vaccine development efforts are taking place in the public sector or as research programs within biotechnology companies. ETEC is a longstanding priority and target for vaccine development for the World Health Organization.
Treatment for ETEC infection includes rehydration therapy and antibiotics, although ETEC is frequently resistant to common antibiotics. Improved sanitation is also key. Since the transmission of this bacterium is fecal contamination of food and water supplies, one way to prevent infection is by improving public and private health facilities. Another simple prevention of infection is by drinking factory bottled water—this is especially important for travelers and traveling military—though it may not be feasible in developing countries, which carry the greatest disease burden.
Diagnosis may be simple in cases where the patient's signs and symptoms are idiopathic to a specific cause. However this is generally not the case, considering that many pathogens which cause enteritis may exhibit the similar symptoms, especially early in the disease. In particular, "campylobacter, shigella, salmonella" and many other bacteria induce acute self-limited colitis, an inflammation of the lining of the colon which appears similar under the microscope.
A medical history, physical examination and tests such as blood counts, stool cultures, CT scans, MRIs, PCRs, colonoscopies and upper endoscopies may be used in order to perform a differential diagnosis. A biopsy may be required to obtain a sample for histopathology.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
With colonoscopy it is possible to detect small ulcers of between 3–5mm, but diagnosis may be difficult as the mucous membrane between these areas can look either healthy or inflamed.
Asymptomatic human infections are usually diagnosed by finding cysts shed in the stool. Various flotation or sedimentation procedures have been developed to recover the cysts from fecal matter and stains help to visualize the isolated cysts for microscopic examination. Since cysts are not shed constantly, a minimum of three stools are examined. In symptomatic infections, the motile form (the trophozoite) is often seen in fresh feces. Serological tests exist, and most infected individuals (with symptoms or not) test positive for the presence of antibodies. The levels of antibody are much higher in individuals with liver abscesses. Serology only becomes positive about two weeks after infection. More recent developments include a kit that detects the presence of amoeba proteins in the feces, and another that detects ameba DNA in feces. These tests are not in widespread use due to their expense.
Microscopy is still by far the most widespread method of diagnosis around the world. However it is not as sensitive or accurate in diagnosis as the other tests available. It is important to distinguish the "E. histolytica" cyst from the cysts of nonpathogenic intestinal protozoa such as "Entamoeba coli" by its appearance. "E. histolytica" cysts have a maximum of four nuclei, while the commensal "Entamoeba coli" cyst has up to 8 nuclei. Additionally, in "E. histolytica," the endosome is centrally located in the nucleus, while it is usually off-center in "Entamoeba coli." Finally, chromatoidal bodies in "E. histolytica" cysts are rounded, while they are jagged in "Entamoeba coli". However, other species, "Entamoeba dispar" and "E. moshkovskii", are also commensals and cannot be distinguished from "E. histolytica" under the microscope. As "E. dispar" is much more common than "E. histolytica" in most parts of the world this means that there is a lot of incorrect diagnosis of "E. histolytica" infection taking place. The WHO recommends that infections diagnosed by microscopy alone should not be treated if they are asymptomatic and there is no other reason to suspect that the infection is actually "E. histolytica". Detection of cysts or trophozoites stools under microscope may require examination of several samples over several days to determine if they are present, because cysts are shed intermittently and may not show up in every sample.
Typically, the organism can no longer be found in the feces once the disease goes extra-intestinal. Serological tests are useful in detecting infection by "E. histolytica" if the organism goes extra-intestinal and in excluding the organism from the diagnosis of other disorders. An Ova & Parasite (O&P) test or an "E. histolytica" fecal antigen assay is the proper assay for intestinal infections. Since antibodies may persist for years after clinical cure, a positive serological result may not necessarily indicate an active infection. A negative serological result however can be equally important in excluding suspected tissue invasion by "E. histolytica".
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
PCR-based screening methodologies are in the process of development. Although they speed up detection immensely, they are costly and the reliability of the tests is questionable due to false positives. Nested arbitrary PCR (ARB-PCR) was used during a 2007 CRE outbreak at the University of Virginia Medical Center to identify the specific "bla" KPC plasmid involved in the transmission of the infection, and researchers suggest that ARB-PCR may also be used to identify other methods of CRE spread.
Note that, in neonates, sepsis is difficult to diagnose clinically. They may be relatively asymptomatic until hemodynamic and respiratory collapse is imminent, so, if there is even a remote suspicion of sepsis, they are frequently treated with antibiotics empirically until cultures are sufficiently proven to be negative. In addition to fluid resuscitation and supportive care, a common antibiotic regimen in infants with suspected sepsis is a beta-lactam antibiotic (usually ampicillin) in combination with an aminoglycoside (usually gentamicin) or a third-generation cephalosporin (usually cefotaxime—ceftriaxone is generally avoided in neonates due to the theoretical risk of kernicterus.) The organisms which are targeted are species that predominate in the female genitourinary tract and to which neonates are especially vulnerable to, specifically Group B Streptococcus, "Escherichia coli", and "Listeria monocytogenes" (This is the main rationale for using ampicillin versus other beta-lactams.) Of course, neonates are also vulnerable to other common pathogens that can cause meningitis and bacteremia such as "Streptococcus pneumoniae" and "Neisseria meningitidis". Although uncommon, if anaerobic species are suspected (such as in cases where necrotizing enterocolitis or intestinal perforation is a concern, clindamycin is often added.
Granulocyte-macrophage colony stimulating factor (GM-CSF) is sometimes used in neonatal sepsis. However, a 2009 study found that GM-CSF corrects neutropenia if present but it has no effect on reducing sepsis or improving survival.
Trials of probiotics for prevention of neonatal sepsis have generally been too small and statistically underpowered to detect any benefit, but a randomized controlled trial that enrolled 4,556 neonates in India reported that probiotics significantly reduced the risk of developing sepsis. The probiotic used in the trial was "Lactobacillus plantarum".
A very large meta-analysis investigated the effect of probiotics on preventing late-onset sepsis (LOS) in neonates. Probiotics were found to reduce the risk of LOS, but only in babies who were fed human milk exclusively. It is difficult to distinguish if the prevention was a result of the probiotic supplementation or if it was a result of the properties of human milk. It is also still unclear if probiotic administration reduces LOS risk in extremely low birth weight infants due to the limited number of studies that investigated it. Out of the 37 studies included in this systematic review, none indicated any safety problems related to the probiotics. It would be beneficial to clarify the relationship between probiotic supplementation and human milk for future studies in order to prevent late onset sepsis in neonates.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
The best known of these strains is , but non-O157 strains cause an estimated 36,000 illnesses, 1,000 hospitalizations and 30 deaths in the United States yearly. Food safety specialists recognize "Big Six" strains; O26, O45, O103, O111, O121, and O145. A was caused by another STEC, . This strain has both enteroaggregative and enterohemorrhagic properties. Both the O145 and O104 strains can cause hemolytic-uremic syndrome; the former strain shown to account for 2% to 51% of known HUS cases; an estimated 56% of such cases are caused by O145 and 14% by other EHEC strains.
EHECs that induce bloody diarrhea lead to HUS in 10% of cases. The clinical manifestations of postdiarrheal HUS include acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia. The verocytotoxin (shiga-like toxin) can directly damage renal and endothelial cells. Thrombocytopenia occurs as platelets are consumed by clotting. Hemolytic anemia results from intravascular fibrin deposition, increased fragility of red blood cells, and fragmentation.
Antibiotics are of questionable value and have not shown to be of clear clinical benefit. Antibiotics that interfere with DNA synthesis, such as fluoroquinolones, have been shown to induce the Stx-bearing bacteriophage and cause increased production of toxins. Attempts to block toxin production with antibacterials which target the ribosomal protein synthesis are conceptually more attractive. Plasma exchange offers a controversial but possibly helpful treatment. The use of antimotility agents (medications that suppress diarrhea by slowing bowel transit) in children under 10 years of age or in elderly patients should be avoided, as they increase the risk of HUS with EHEC infections.
The clinical presentation ranges from a mild and uncomplicated diarrhea to a hemorrhagic colitis with severe abdominal pain. Serotype O157:H7 may trigger an infectious dose with 100 bacterial cells or fewer; other strain such as 104:H4 has also caused an outbreak in Germany 2011. Infections are most common in warmer months and in children under five years of age and are usually acquired from uncooked beef and unpasteurized milk and juice. Initially a non-bloody diarrhea develops in patients after the bacterium attaches to the epithelium or the terminal ileum, cecum, and colon. The subsequent production of toxins mediates the bloody diarrhea. In children, a complication can be hemolytic uremic syndrome which then uses cytotoxins to attack the cells in the gut, so that bacteria can leak out into the blood and cause endothelial injury in locations such as the kidney by binding to globotriaosylceramide (Gb3).
A determination of whether or not the person has dehydration is an important part of the assessment, with dehydration typically divided into mild (3–5%), moderate (6–9%), and severe (≥10%) cases. In children, the most accurate signs of moderate or severe dehydration are a prolonged capillary refill, poor skin turgor, and abnormal breathing. Other useful findings (when used in combination) include sunken eyes, decreased activity, a lack of tears, and a dry mouth. A normal urinary output and oral fluid intake is reassuring. Laboratory testing is of little clinical benefit in determining the degree of dehydration. Thus the use of urine testing or ultrasounds is generally not needed.
In the majority of cases, amoebas remain in the gastrointestinal tract of the hosts. Severe ulceration of the gastrointestinal mucosal surfaces occurs in less than 16% of cases. In fewer cases, the parasite invades the soft tissues, most commonly the liver. Only rarely are masses formed (amoebomas) that lead to intestinal obstruction.(Mistaken for Ca caecum and appendicular mass) Other local complications include bloody diarrhea, pericolic and pericaecal abscess.
Complications of hepatic amoebiasis includes subdiaphragmatic abscess, perforation of diaphragm to pericardium and pleural cavity, perforation to abdominal cavital "(amoebic peritonitis)" and perforation of skin "(amoebiasis cutis)".
Pulmonary amoebiasis can occur from hepatic lesion by haemotagenous spread and also by perforation of pleural cavity and lung. It can cause lung abscess, pulmono pleural fistula, empyema lung and broncho pleural fistula. It can also reach the brain through blood vessels and cause amoebic brain abscess and amoebic meningoencephalitis. Cutaneous amoebiasis can also occur in skin around sites of colostomy wound, perianal region, region overlying visceral lesion and at the site of drainage of liver abscess.
Urogenital tract amoebiasis derived from intestinal lesion can cause amoebic vulvovaginitis "(May's disease)", rectovesicle fistula and rectovaginal fistula.
"Entamoeba histolytica" infection is associated with malnutrition and stunting of growth.
The disc diffusion method can be used by hospital laboratories to screen for CRE. In this technique, antibiotic discs are placed onto plates of Mueller Hinton agar that have already been inoculated with the sample strain. The plates are then incubated overnight at 37 °C. Following incubation, the zones of inhibition surrounding the various antibiotic discs are measured and compared with Clinical and Laboratory Standard Institute guidelines. Identification of KPCs, MBLs and OXAs can be achieved by demonstrating synergistic inhibition with phenyl boronic acid, EDTA or neither, respectively.
In a Thailand-based study of CRE in hospital settings, carbapenem resistance was defined as any strain that shows resistance to at least one of three carbapenem antibiotics tested.
Other potential causes of signs and symptoms that mimic those seen in gastroenteritis that need to be ruled out include appendicitis, volvulus, inflammatory bowel disease, urinary tract infections, and diabetes mellitus. Pancreatic insufficiency, short bowel syndrome, Whipple's disease, coeliac disease, and laxative abuse should also be considered. The differential diagnosis can be complicated somewhat if the person exhibits "only" vomiting or diarrhea (rather than both).
Appendicitis may present with vomiting, abdominal pain, and a small amount of diarrhea in up to 33% of cases. This is in contrast to the large amount of diarrhea that is typical of gastroenteritis. Infections of the lungs or urinary tract in children may also cause vomiting or diarrhea. Classical diabetic ketoacidosis (DKA) presents with abdominal pain, nausea, and vomiting, but without diarrhea. One study found that 17% of children with DKA were initially diagnosed as having gastroenteritis.