Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This disease is often found during the first two months of an infants life, breast-fed infants with a higher chance. Male and female infants are affected equally.
Hospitalization for the diseased person is suggested because of the controlled environment because it may prevent nutritional deficiencies and skin infections. A decrease in severity of symptoms usually happens after a few weeks when treated redness and scaliness usually do not recur. In 10 percent of cases, the result of uncontrolled infections or severe electrolyte loss may be fatal.
The diagnosis of SSSS is made clinically. This is sometimes confirmed by isolation of "S. aureus" from blood, mucous membranes, or skin biopsy; however, these are often negative. Skin biopsy may show separation of the superficial layer of the epidermis (intraepidermal separation), differentiating SSSS from TEN, wherein the separation occurs at the dermo-epidermal junction (subepidermal separation). SSSS may be difficult to distinguish from toxic epidermal necrolysis and pustular psoriasis.
Mild forms of IBS should be diagnosable from appearance and patient history alone. Severe cases of IBS are hard to distinguish from mild EHK.
A skin biopsy shows a characteristic damaged layer in the upper spinous level of the skin. Again it may be difficult to distinguish from EHK.
The gene causing IBS is known and so a definite diagnosis can be given by genetic testing.
The prognosis of SSSS in children is excellent, with complete resolution within 10 days of treatment, and without significant scarring. However, SSSS must be differentiated carefully from toxic epidermal necrolysis, which carries a poor prognosis. The prognosis in adults is generally much worse, and depends upon various factors such as time to treatment, host immunity, and comorbidities.
The diagnosis of harlequin-type ichthyosis relies on both physical examination and certain laboratory tests.
Physical assessment at birth is vital for the initial diagnosis of harlequin ichthyosis. Physical examination reveals characteristic symptoms of the condition especially the abnormalities in the skin surface of newborns. Abnormal findings in physical assessments usually result in employing other diagnostic tests to ascertain the diagnosis.
Genetic testing is the most specific diagnostic test for harlequin ichthyosis. This test reveals a loss of function mutation on the ABCA12 gene. This gene is important in the regulation of protein synthesis for the development of the skin layer. Mutations in the gene may cause impaired transport of lipids in the skin layer and may also lead to shrunken versions of the proteins responsible for skin development. Less severe mutations result in a collodion membrane and congenital ichthyosiform erythroderma-like presentation. ABCA12 is an ATP binding cassette (ABC) transporter, and is a member of a large family of proteins that hydrolyze ATP to transport cargo across membranes. ABCA12 is thought to be a lipid transporter in keratinocytes necessary for lipid transport into lamellar granules during the formation of the lipid barrier.
Biopsy of skin may be done to assess the histologic characteristics of the cells. Histological findings usually reveal hyperkeratotic skin cells, which leads to a thick, white and hard skin layer.
The condition can be diagnosed via exam that reveals; generalized redness; thick, generally dark, scales that tend to form parallel rows of spines or ridges,especially near large joints; the skin is fragile and blisters easily following trauma; extent of blistering and amount of scale is variable
There is no cure for IBS but in the future gene therapy may offer a cure.
Treatments for IBS generally attempt to improve the appearance of the skin and the comfort of the sufferer. This is done by exfoliating and increasing the moisture of the skin. Common treatments include:
- Emollients: moisturisers, petroleum jelly or other emolients are used, often several times a day, to increase the moisture of the skin.
- Baths: long baths (possibly including salt) several times a week are used to soften the skin and allow exfoliation.
- Exfoliating creams: creams containing keratolytics such as urea, salicylic acid and lactic acid may be useful.
- Antiseptic washes: antiseptics may be used to kill bacteria in the skin and prevent odour.
- Retenoids: very severe cases may use oral retinoids to control symptoms but these have many serious side effects including, in the case of IBS, increased blistering.
Constant care is required to moisturise and protect the skin. The hard outer layer eventually peels off, leaving the vulnerable inner layers of the dermis exposed. Early complications result from infection due to fissuring of the hyperkeratotic plates and respiratory distress due to physical restriction of chest wall expansion.
Management includes supportive care and treatment of hyperkeratosis and skin barrier dysfunction. A humidified incubator is generally used. Intubation is often required until nares are patent. Nutritional support with tube feeds is essential until eclabium resolves and infants can begin nursing. Ophthalmology consultation is useful for the early management of ectropion, which is initially pronounced and resolves as scale is shed. Liberal application of petrolatum is needed multiple times a day. In addition, careful debridement of constrictive bands of hyperkeratosis should be performed to avoid digital ischemia. Cases of digital autoamputation or necrosis have been reported due to cutaneous constriction bands. Relaxation incisions have been used to prevent this morbid complication.
In the past, the disorder was nearly always fatal, whether due to dehydration, infection (sepsis), restricted breathing due to the plating, or other related causes. The most common cause of death was systemic infection and sufferers rarely survived for more than a few days. However, improved neonatal intensive care and early treatment with oral retinoids, such as the drug Isotretinoin (Isotrex), may improve survival. Early oral retinoid therapy has been shown to soften scales and encourage desquamation. After as little as two weeks of daily oral isotretinoin, fissures in the skin can heal, and plate-like scales can nearly resolve. Improvement in the eclabium and ectropion can also be seen in a matter of weeks. Children who survive the neonatal period usually evolve to a less severe phenotype, resembling a severe congenital ichthyosiform erythroderma. Patients continue to suffer from temperature dysregulation and may have heat and cold intolerance. Patients can also have generalized poor hair growth, scarring alopecia, contractures of digits, arthralgias, failure to thrive, hypothyroidism, and short stature. Some patients develop a rheumatoid factor-positive polyarthritis. Survivors can also develop fish-like scales and retention of a waxy, yellowish material in seborrheic areas, with ear adhered to the scalp.
The oldest known survivor is Nusrit "Nelly" Shaheen, who was born in 1984 and is in relatively good health as of April 2016. Lifespan limitations have not yet been determined with the new treatments.
A study published in 2011 in the Archives of Dermatology concluded, "Harlequin ichthyosis should be regarded as a severe chronic disease that is not invariably fatal. With improved neonatal care and probably the early introduction of oral retinoids, the number of survivors is increasing."
The challenge has always been how to deliver the siRNA using a topical method or retroviral vectors and ex vivo gene transfer. In 2011/12 a team at Northwestern University claim to have solved the topical delivery of siRNA dilemma. Personalized siRNA can be delivered in a commercial moisturizer or phosphate-buffered saline, and do not require barrier disruption or transfection agents, such as liposomes, peptides, or viruses. "Topical application of nucleic acids offers many potential therapeutic advantages for suppressing genes in the skin, and potentially for systemic gene delivery. However, the epidermal barrier typically precludes entry of gene-suppressing therapy unless the barrier is disrupted. We now show that spherical nucleic acid nanoparticle conjugates (SNA-NCs), gold cores surrounded by a dense shell of highly oriented, covalently immobilized siRNA, freely penetrate almost 100% of keratinocytes in vitro, mouse skin, and human epidermis within hours after application."
This new discovery may soon offer hope to all suffering from mono-genetic diseases such as EHK. This may lead to promising personalized, topically delivered gene therapy of cutaneous tumors, skin inflammation, and dominant negative genetic skin disorders.
UPDATE: OCTOBER 2014
As of late, Paller reports "we are using a new nanotechnology-based technique called 'spherical nucleic acids' (SNAs) to suppress the production of the abnormal keratin 10 gene that is the most common change leading to epidermolytic ichthyosis. We continue to screen candidate SNAs to find a few that clearly suppress the abnormal keratin 10 gene much more than the normal keratin 10 gene. In the meantime, we have developed several tools towards this effort, which can also be used by other researchers. Most recently we've developed a special 'lentivirus reporter construct' in which we can see through changes in fluorescence whether or not our SNA works."
Dr. Paller and her team recently received more good news with regard to progressing their research. "We just received a grant from the National Institutes of Health (NIH) to continue this effort based on our preliminary data collected with FIRST's funding support. FIRST has been instrumental in furthering our research efforts related to ichthyosis," she said.
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
While the most common symptom of PCT is the appearance of skin lesions and blistering, their appearance does not single-handedly lead to a conclusive diagnosis. Laboratory testing will commonly reveal high levels of uroporphyrinogen in the urine, clinically referred to as uroporphyrinogenuria. Additionally, testing for common risk factors such as Hepatitis C and hemochromatosis is strongly suggested, as their high prevalence in patients with PCT may require additional treatment. If clinical appearance of PCT is present, but laboratories are negative, one needs to seriously consider the diagnosis of pseudoporphyria.
The classification of exfoliative dermatitis into Wilson-Brocq (chronic relapsing), Hebra or pityriasis rubra (progressive), and Savill (self-limited) types may have had historical value, but it currently lacks pathophysiologic or clinical utility.
Experimental treatments include Resimmune or A-dmDT390-bisFv(UCHT1) which is an anti-T cell immunotoxin in a Phase II clinical trial.
Mogamulizumab (KW-0761) had a phase 3 clinical trial for Relapsed/Refractory CTCL (including mycosis fungoides). After preliminary results on mycosis fungoides in 2017 the US FDA granted it a priority review for CTCL.
Diagnosis is sometimes difficult because the early phases of the disease often resemble eczema or even psoriasis. As with any serious disease,
it is advisable to pursue the opinion of a medical professional if a case is suspected. Diagnosis is generally accomplished through a skin biopsy. Several biopsies are recommended, to be more certain of the diagnosis. The diagnosis is made through a combination of the clinical picture and examination, and is confirmed by biopsy.
To stage the disease, various tests may be ordered, to assess nodes, blood and internal organs, but most patients present with disease apparently confined to the skin, as patches (flat spots) and plaques (slightly raised or 'wrinkled' spots).
Peripheral smear will often show buttock cells.
Drug eruptions are diagnosed mainly from the medical history and clinical examination. However, they can mimic a wide range of other conditions, thus delaying diagnosis (for example, in drug-induced lupus erythematosus, or the acne-like rash caused by erlotinib). A skin biopsy, blood tests or immunological tests can also be useful.
Drug reactions have characteristic timing. The typical amount of time it takes for a rash to appear after exposure to a drug can help categorize the type of reaction. For example, Acute generalized exanthematous pustulosis usually occurs within 4 days of starting the culprit drug. Drug Reaction with Eosinophilia and Systemic Symptoms usually occurs between 15 and 40 days after exposure. Toxic epidermal necrolysis and Stevens-Johnson syndrome typically occur 7–21 days after exposure. Anaphylaxis occurs within minutes. Simple exanthematous eruptions occur between 4 and 14 days after exposure.
TEN and SJS are severe cutaneous drug reactions that involve the skin and mucous membranes. To accurately diagnose this condition, a detailed drug history is crucial. Often, several drugs may be causative and allergy testing may be helpful. Sulfa drugs are well-known to induce TEN or SJS in certain people. For example, HIV patients have an increased incidence of SJS or TEN compared to the general population and have been found to express low levels of the drug metabolizing enzyme responsible for detoxifying sulfa drugs. Genetics plays an important role in predisposing certain populations to TEN and SJS. As such, there are some FDA recommended genetic screening tests available for certain drugs and ethnic populations to prevent the occurrence of a drug eruption. The most well known example is carbamezepine (an anti-convulsant used to treat seizures) hypersensitivity associated with the presence of HLA-B*5801 genetic allele in Asian populations.
DIHS is a delayed onset drug eruption, often occurring a few weeks to 3 months after initiation of a drug. Interestingly, worsening of systemic symptoms occurs 3-4 days after cessation of the offending drug. There are genetic risk alleles that are predictive of the development of DIHS for particular drugs and ethnic populations. The most important of which is abacavir (an anti-viral used in the treatment of HIV) hypersensitivity associated with the presence of the HLA-B*5701 allele in European and African population in the United States and Australians.
AGEP is often caused by antimicrobial, anti-fungal or antimalarial drugs. Diagnosis is often carried out by patch testing. This testing should be performed within one month after resolution of the rash and patch test results are interpreted at different time points: 48 hours, 72hours and even later at 96 hours and 120 hours in order to improve the sensitivity.
You have to treat the primary cause or the exacerbation may persisist and reincide.
Topical steroids are the primary category of medications used to treat exfoliative dermatitis (ED). A sedative antihistamine may be a useful adjunct for pruritic patients, since it helps patients to sleep at night, thus limiting nocturnal scratching and excoriations. Antimicrobial agents often are used if an infection is suspected to be precipitating or complicating exfoliative dermatitis. Other drugs specifically indicated for management of underlying cause of exfoliative dermatitis may be necessary.
Some sources divide PCT into two types: sporadic and familial. Other sources include a third type, but this is less common.
One study used 74% as the cutoff for UROD activity, with those patients under that number being classified as type II, and those above classified as type III if there was a family history, and type I if there was not.
Genetic variants associated with hemochromatosis have been observed in PCT patients, which may help explain inherited PCT not associated with UROD.
There is no consensus about how to classify the severity of psoriasis. Mild psoriasis has been defined as a percentage of body surface area (BSA)≤10, a Psoriasis Area Severity Index (PASI) score ≤10, and a dermatology life quality index (DLQI) score ≤10. Moderate to severe psoriasis was defined by the same group as BSA >10 or PASI score >10 and a DLQI score >10. The DLQI is a 10 question tool used to measure the impact of several dermatologic diseases on daily functioning. The DLQI score ranges from 0 (minimal impairment) to 30 (maximal impairment) and is calculated with each answer being assigned 0–3 points with higher scores indicating greater social or occupational impairment.
The psoriasis area severity index (PASI) is the most widely used measurement tool for psoriasis. PASI assesses the severity of lesions and the area affected and combines these two factors into a single score from 0 (no disease) to 72 (maximal disease). Nevertheless, the PASI can be too unwieldy to use outside of research settings, which has led to attempts to simplify the index for clinical use.
Given the definition of basophilia, diagnosis is made from a complete blood count where there are more than 10 basophils per liter of blood.
Another classification scheme considers genetic and demographic factors. Type 1 has a positive family history, starts before the age of 40, and is associated with the human leukocyte antigen, "HLA-Cw6". Conversely, type 2 does not show a family history, presents after age 40, and is not associated with "HLA-Cw6". Type 1 accounts for about 75% of persons with psoriasis.
The classification of psoriasis as an autoimmune disease has sparked considerable debate. Researchers have proposed differing descriptions of psoriasis and psoriatic arthritis; some authors have classified them as autoimmune diseases while others have classified them as distinct from autoimmune diseases and referred to them as immune-mediated inflammatory diseases.
Psoriatic erythroderma (also known as erythrodermic psoriasis) represents a generalized form of psoriasis that affects all body sites, including the face, hands, feet, nails, trunk, and extremities. First-line treatments for psoriatic erythroderma include immunosuppressive medications such as methotrexate, acitretin, or ciclosporin.
HFM must be distinguished from cerebral folate deficiency (CFD)– a condition in which there is normal intestinal folate absorption, without systemic folate deficiency, but a decrease in CSF folate levels. This can accompany a variety of disorders. One form of CFD is due to loss-of-mutations in folate receptor-α, (FRα), which transports folates via an endocytic process. While PCFT is expressed primarily at the basolateral membrane of the choroid plexus, FRα, is expressed primarily at the apical brush-border membrane. Unlike subjects with HFM, patients with CFD present with neurological signs a few years after birth. The basis for the delay in the appearance of clinical manifestations due to loss of FRα function is not clear; the normal blood folate levels may be protective, although for a limited time.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Diagnosis can be made solely on the basis of history and physical examination in people who present with only facial asymmetry. For those who report neurological symptoms such as migraine or seizures, MRI scan of the brain is the imaging modality of choice. A diagnostic lumbar puncture and serum test for autoantibodies may also be indicated in people who present with a seizure disorder of recent onset.