Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For acute pericarditis to formally be diagnosed, two or more of the following criteria must be present: chest pain consistent with a diagnosis of acute pericarditis (sharp chest pain worsened by breathing in or a cough), a pericardial friction rub, a pericardial effusion, and changes on electrocardiogram (ECG) consistent with acute pericarditis.
A complete blood count may show an elevated white count and a serum C-reactive protein may be elevated. Acute pericarditis is associated with a modest increase in serum creatine kinase MB (CK-MB). and cardiac troponin I (cTnI), both of which are also markers for injury to the muscular layer of the heart. Therefore, it is imperative to also rule out acute myocardial infarction in the face of these biomarkers. The elevation of these substances may occur when inflammation of the heart's muscular layer in addition to acute pericarditis. Also, ST elevation on EKG (see below) is more common in those patients with a cTnI > 1.5 µg/L. Coronary angiography in those patients should indicate normal vascular perfusion. Troponin levels increase in 35-50% of people with pericarditis.
Electrocardiogram (ECG) changes in acute pericarditis mainly indicates inflammation of the epicardium (the layer directly surrounding the heart), since the fibrous pericardium is electrically inert. For example, in uremia, there is no inflammation in the epicardium, only fibrin deposition, and therefore the EKG in uremic pericarditis will be normal. Typical EKG changes in acute pericarditis includes
- stage 1 -- diffuse, positive, ST elevations with reciprocal ST depression in aVR and V1. Elevation of PR segment in aVR and depression of PR in other leads especially left heart V5, V6 leads indicates atrial injury.
- stage 2 -- normalization of ST and PR deviations
- stage 3 -- diffuse T wave inversions (may not be present in all patients)
- stage 4 -- EKG becomes normal OR T waves may be indefinitely inverted
The two most common clinical conditions where ECG findings may mimic pericarditis are acute myocardial infarction (AMI) and generalized early repolarization. As opposed to pericarditis, AMI usually causes localized convex ST-elevation usually associated with reciprocal ST-depression which may also be frequently accompanied by Q-waves, T-wave inversions (while ST is still elevated unlike pericarditis), arrhythmias and conduction abnormalities. In AMI, PR-depressions are rarely present. Early repolarization usually occurs in young males (age <40 years) and ECG changes are characterized by terminal R-S slurring, temporal stability of ST-deviations and J-height/ T-amplitude ratio in V5 and V6 of <25% as opposed to pericarditis where terminal R-S slurring is very uncommon and J-height/ T-amplitude ratio is ≥ 25%. Very rarely, ECG changes in hypothermia may mimic pericarditis, however differentiation can be helpful by a detailed history and presence of an Osborne wave in hypothermia.
Another important diagnostic electrocardiographic sign in acute pericarditis is the Spodick sign. It signifies to the PR-depressions in a usual (but not always) association with downsloping TP segment in patients with acute pericarditis and is present in up to 80% of the patients affected with acute pericarditis. The sign is often best visualized in lead II and lateral precordial leads. In addition, Spodick’s sign may also serve as an important distinguishing electrocardiographic tool between the acute pericarditis and acute coronary syndrome. The presence of a classical Spodick’s sign is often a giveaway to the diagnosis.
Rarely, electrical alternans may be seen, depending on the size of the effusion.
A chest x-ray is usually normal in acute pericarditis, but can reveal the presence of an enlarged heart if a pericardial effusion is present and is greater than 200 mL in volume. Conversely, patients with unexplained new onset cardiomegaly should always be worked up for acute pericarditis.
An echocardiogram is typically normal in acute pericarditis but can reveal pericardial effusion, the presence of which supports the diagnosis, although its absence does not exclude the diagnosis.
The diagnosis of constrictive pericarditis is often difficult to make. In particular, restrictive cardiomyopathy has many similar clinical features to constrictive pericarditis, and differentiating them in a particular individual is often a diagnostic dilemma.
- Chest X-Ray - pericardial calcification (common but not specific), pleural effusions are common findings.
- Echocardiography - the principal echographic finding is changes in cardiac chamber volume.
- CT and MRI - useful in select cases.
- BNP blood test - tests for the existence of the cardiac hormone brain natriuretic peptide, which is only present in RCMP but not in CP
- Conventional cardiac catheterization
- Physical examination -can reveal clinical features including Kussmaul's sign and a pericardial knock.
About 30% of people with viral pericarditis or pericarditis of an unknown cause have one or several recurrent episodes.
Depending on the time of presentation and duration, pericarditis is divided into "acute" and "chronic" forms. Acute pericarditis is more common than chronic pericarditis, and can occur as a complication of infections, immunologic conditions, or even as a result of a heart attack (myocardial infarction). Chronic pericarditis however is less common, a form of which is constrictive pericarditis. The following is the clinical classification of acute vs. chronic:
- "Clinically": Acute (6 months)
The definitive treatment for constrictive pericarditis is pericardial stripping, which is a surgical procedure where the entire pericardium is peeled away from the heart. This procedure has significant risk involved, with mortality rates of 6% or higher in major referral centers.
A poor outcome is almost always the result after a pericardiectomy is performed for constrictive pericarditis whose origin was radiation-induced, further some patients may develop heart failure post-operatively.
Patients with uncomplicated acute pericarditis can generally be treated and followed up in an outpatient clinic. However, those with high risk factors for developing complications (see above) will need to be admitted to an inpatient service, most likely an ICU setting. High risk patients include the following:
- subacute onset
- high fever (> 100.4 F/38 C) and leukocytosis
- development of cardiac tamponade
- large pericardial effusion (echo-free space > 20 mm) resistant to NSAID treatment
- immunocompromised
- history of oral anticoagulation therapy
- acute trauma
- failure to respond to seven days of NSAID treatment
Pericardiocentesis is a procedure whereby the fluid in a pericardial effusion is removed through a needle. It is performed under the following conditions:
- presence of moderate or severe cardiac tamponade
- diagnostic purpose for suspected purulent, tuberculosis, or neoplastic pericarditis
- persistent symptomatic pericardial effusion
NSAIDs in "viral" or "idiopathic" pericarditis. In patients with underlying causes other than viral, the specific etiology should be treated. With idiopathic or viral pericarditis, NSAID is the mainstay treatment. Goal of therapy is to reduce pain and inflammation. The course of the disease may not be affected. The preferred NSAID is ibuprofen because of rare side effects, better effect on coronary flow, and larger dose range. Depending on severity, dosing is between 300–800 mg every 6–8 hours for days or weeks as needed. An alternative protocol is aspirin 800 mg every 6–8 hours. Dose tapering of NSAIDs may be needed. In pericarditis following acute myocardial infarction, NSAIDs other than aspirin should be avoided since they can impair scar formation. As with all NSAID use, GI protection should be engaged. Failure to respond to NSAIDs within one week (indicated by persistence of fever, worsening of condition, new pericardial effusion, or continuing chest pain) likely indicates that a cause other than viral or idiopathic is in process.
Colchicine, which has been essential to treat recurrent pericarditis, has been supported for routine use in acute pericarditis by recent prospective studies. Colchicine can be given 0.6 mg twice a day (0.6 mg daily for patients <70 kg) for 3 months following an acute attack. It should be considered in all patients with acute pericarditis, preferably in combination with a short-course of NSAIDs. For patients with a first episode of acute idiopathic or viral pericarditis, they should be treated with an NSAID plus colchicine 1–2 mg on first day followed by 0.5 daily or twice daily for three months. It should be avoided or used with caution in patients with severe renal insufficiency, hepatobiliary dysfunction, blood dyscrasias, and gastrointestinal motility disorders.
Corticosteroids are usually used in those cases that are clearly refractory to NSAIDs and colchicine and a specific cause has not been found. Systemic corticosteroids are usually reserved for those with autoimmune disease.
Blood tests can detect bacterial or viral infections, pneumonia, rheumatic fever, a pulmonary embolism, or lupus.
Electrocardiography test can determine if a heart condition contributes to the symptoms.
Myocarditis refers to an underlying process that causes inflammation and injury of the heart. It does not refer to inflammation of the heart as a consequence of some other insult. Many secondary causes, such as a heart attack, can lead to inflammation of the myocardium and therefore the diagnosis of myocarditis cannot be made by evidence of inflammation of the myocardium alone.
Myocardial inflammation can be suspected on the basis of electrocardiographic (ECG) results, elevated C-reactive protein (CRP) and/or erythrocyte sedimentation rate (ESR), and increased IgM (serology) against viruses known to affect the myocardium. Markers of myocardial damage (troponin or creatine kinase cardiac isoenzymes) are elevated.
The ECG findings most commonly seen in myocarditis are diffuse T wave inversions; saddle-shaped ST-segment elevations may be present (these are also seen in pericarditis).
The gold standard is still biopsy of the myocardium, in general done in the setting of angiography. A small tissue sample of the endocardium and myocardium is taken, and investigated by a pathologist by light microscopy and—if necessary—immunochemistry and special staining methods. Histopathological features are myocardial interstitium with abundant edema and inflammatory infiltrate, rich in lymphocytes and macrophages. Focal destruction of myocytes explains the myocardial pump failure.
Cardiac magnetic resonance imaging (cMRI or CMR) has been shown to be very useful in diagnosing myocarditis by visualizing markers for inflammation of the myocardium.
Recently, consensus criteria for the diagnosis of myocarditis by CMR have been published.
Dressler syndrome is best treated with high dose aspirin. In some resistant cases, corticosteroids can be used but are not preferred (avoided) in first month due to the high frequency of impaired ventricular healing leading to increased rate of ventricular rupture. NSAIDs though once used to treat Dressler syndrome, are less advocated and should be avoided in patients with ischemic heart disease. One NSAID in particular, indomethacin, can inhibit new collagen deposition thus impairing the healing process for the infarcted region. NSAIDS should only be used in cases refractory to aspirin. Heparin in Dressler syndrome should be avoided because it can lead to hemorrhage into the pericardial sac leading to tamponade. The only time heparin could be used with pericarditis is with coexisting acute MI in order to prevent further thrombus formation.
Studies have shown no benefit for the use of herbal medicine on all cause mortality in viral myocarditis.
Initial diagnosis can be challenging, as there are a number of differential diagnoses, including tension pneumothorax, and acute heart failure. In a trauma patient presenting with PEA (pulseless electrical activity) in the absence of hypovolemia and tension pneumothorax, the most likely diagnosis is cardiac tamponade.
Signs of classical cardiac tamponade include three signs, known as Beck's triad. Low blood pressure occurs because of decreased stroke volume, jugular-venous distension due to impaired venous return to the heart, and muffled heart sounds due to fluid buildup inside the pericardium.
Other signs of tamponade include pulsus paradoxus (a drop of at least 10 mmHg in arterial blood pressure with inspiration), and ST segment changes on the electrocardiogram, which may also show low voltage QRS complexes, as well as general signs and symptoms of shock (such as fast heart rate, shortness of breath and decreasing level of consciousness). However, some of these signs may not be present in certain cases. A fast heart rate, although expected, may be absent in people with uremia and hypothyroidism.
In addition to the diagnostic complications afforded by the wide-ranging differential diagnosis for chest pain, diagnosis can be additionally complicated by the fact that patients will often be weak or faint at presentation. For instance, a fast rate of breathing and difficulty breathing on exertion that progresses to air hunger at rest can be a key diagnostic symptom, but it may not be possible to obtain such information from patients who are unconscious or who have convulsions at presentation.
Tamponade can often be diagnosed radiographically. Echocardiography, which is the diagnostic test of choice, often demonstrates an enlarged pericardium or collapsed ventricles. A large cardiac tamponade will show as an enlarged globular-shaped heart on chest x-ray. During inspiration, the negative pressure in the thoracic cavity will cause increased pressure into the right ventricle. This increased pressure in the right ventricle will cause the interventricular septum to bulge towards the left ventricle, leading to decreased filling of the left ventricle. At the same time, right ventricle volume is markedly diminished and sometimes it can collapse.
Tuberculous pericarditis is a form of pericarditis.
Pericarditis caused by tuberculosis is difficult to diagnose, because definitive diagnosis requires culturing "Mycobacterium tuberculosis" from aspirated pericardial fluid or pericardial , which requires high technical skill and is often not diagnostic (the yield from culture is low even with optimum specimens). The Tygerberg scoring system helps the clinician to decide whether pericarditis is due to tuberculosis or whether it is due to another cause: night sweats (1 point), weight loss (1 point), fever (2 point), serum globulin > 40g/l (3 points), blood total leucocyte count <10 x 10/l (3 points); a total score of 6 or more is highly suggestive of tuberculous pericarditis. Pericardial fluid with an interferon-γ level greater than 50/ml is highly specific for tuberculous pericarditis.
There are no randomized trials which evaluate the length of anti-tuberculosis treatment required for tuberculous pericarditis. There is a small but not conclusive benefit for treatment with a schedule of steroids with anti-tuberculosis drugs. Open surgical drainage of fluid though effective in preventing cardiac tamponade was associated with more deaths.
A complication that may occur in the acute setting soon after a myocardial infarction or in the weeks following is cardiogenic shock. Cardiogenic shock is defined as a hemodynamic state in which the heart cannot produce enough of a cardiac output to supply an adequate amount of oxygenated blood to the tissues of the body.
While the data on performing interventions on individuals with cardiogenic shock is sparse, trial data suggests a long-term mortality benefit in undergoing revascularization if the individual is less than 75 years old and if the onset of the acute myocardial infarction is less than 36 hours and the onset of cardiogenic shock is less than 18 hours. If the patient with cardiogenic shock is not going to be revascularized, aggressive hemodynamic support is warranted, with insertion of an intra-aortic balloon pump if not contraindicated. If diagnostic coronary angiography does not reveal a culprit blockage that is the cause of the cardiogenic shock, the prognosis is poor.
There are a number of different biomarkers used to determine the presence of cardiac muscle damage. Troponins, measured through a blood test, are considered to be the best, and are preferred because they have greater sensitivity and specificity for measuring injury to the heart muscle than other tests. A rise in troponin occurs within 2–3 hours of injury to the heart muscle, and peaks within 1–2 days. The gross value of the troponin, as well as a change over time, are useful in measuring and diagnosing or excluding myocardial infarctions, and the diagnostic accuracy of troponin testing is improving over time. One high-sensitivity cardiac troponin is able to rule out a heart attack as long as the ECG is normal.
Other tests, such as CK-MB or myoglobin, are discouraged. CK-MB is not as specific as troponins for acute myocardial injury, and may be elevated with past cardiac surgery, inflammation or electrical cardioversion; it rises within 4–8 hours and returns to normal within 2–3 days. Copeptin may be useful to rule out MI rapidly when used along with troponin.
Noninvasive imaging plays an important role in the diagnosis and characterisation of myocardial infarction. Tests such as chest X-rays can be used to explore and exclude alternate causes of a person's symptoms. Tests such as stress echocardiography and myocardial perfusion imaging can confirm a diagnosis when a person's history, physical examination (including cardiac examination) ECG, and cardiac biomarkers suggest the likelihood of a problem.
Echocardiography, an ultrasound scan of the heart, is able to visualize the heart, its size, shape, and any abnormal motion of the heart walls as they beat that may indicate a myocardial infarction. The flow of blood can be imaged, and contrast dyes may be given to improve image. Other scans using radioactive contrast include SPECT CT-scans using thallium, sestamibi (MIBI scans) or tetrofosmin; or a PET scan using Fludeoxyglucose or rubidium-82. These nuclear medicine scans can visualize the perfusion of heart muscle. SPECT may also be used to determine viability of tissue, and whether areas of ischemia are inducible.
Medical societies and professional guidelines recommend that the physician confirm a person is at high risk for myocardial infarction before conducting imaging tests to make a diagnosis, as such tests are unlikely to change management and result in increased costs. Patients who have a normal ECG and who are able to exercise, for example, do not merit routine imaging.
Dressler syndrome needs to be differentiated from pulmonary embolism, another identifiable cause of pleuritic (and non-pleuritic) chest pain in people who have been hospitalized and/or undergone surgical procedures within the preceding weeks.
The frequency of tamponade is unclear. One estimate from the United States places it at 2 per 10,000 per year. It is estimated to occur in 2% of those with stab or gunshot wounds to the chest.
Myopericarditis is a combination of both myocarditis and pericarditis appearing in a single individual, namely inflammation of both the pericardium and the heart muscle. It can involve the presence of fluid in the heart. Myopericarditis refers primarily to a pericarditis with lesser myocarditis, as opposed to a perimyocarditis, though the two terms are often used interchangeably. Both will be reflected on an ECG. Myo-pericarditis usually involves inflammation of the pericardium, or the sac covering the heart.
The ACAM2000 smallpox vaccine has been known to cause myopericarditis in some people.
Uremic pericarditis is correlated to the degree of azotemia in the system. BUN is normally >60 mg/dL (normal is 7–20 mg/dL). The pathogenesis is poorly understood.
Intensive cardiac care and immunosuppressives including corticosteroids are helpful in the acute stage of the disease. Chronic phase has, mainly debility control and supportive care options.
Fibrinous pericarditis is an exudative inflammation. The pericardium is infiltrated by the fibrinous exudate. This consists of fibrin strands and leukocytes. Fibrin describes an amorphous, eosinophilic (pink) network. Leukocytes (white blood cells; mainly neutrophils) are found within the fibrin deposits and intrapericardic. Vascular congestion is also present. Inflammatory cells do not penetrate the myocardium (as is seen with other presentations of pericarditis), and as a result, this particular variant does not present with diffuse ST elevation on ECG (a classic sign of pericarditis known as stage I ECG changes which are seen with other causes). To naked eye examination, this pathology is referred to as having a "Bread and Butter Appearance".
Treatment depends on the underlying cause and the severity of the heart impairment. Pericardial effusion due to a viral infection usually goes away within a few weeks without the treatment. Some pericardial effusions remain small and never need treatment. If the pericardial effusion is due to a condition such as lupus, treatment with anti-inflammatory medications may help. If the effusion is compromising heart function and causing cardiac tamponade, it will need to be drained, most commonly by a needle inserted through the chest wall and into the pericardial space called pericardiocentesis. A drainage tube is often left in place for several days. In some cases, surgical drainage may be required by cutting through the pericardium creating a pericardial window.
These depend on the amount of inflammation. These are covered in their relevant articles.
- Acute: Heart failure; pericardial effusion; etc.
- Chronic: Valve diseases as noted above; Reduced cardiac output; Exercise intolerance.
It may be:
- "transudative" (congestive heart failure, myxoedema, nephrotic syndrome),
- "exudative" (tuberculosis, spread from empyema)
- "hemorrhagic" (trauma, rupture of aneurysms, malignant effusion).
- "malignant" (due to fluid accumulation caused by metastasis)
The most common causes of pericardial effusion have changed over time and vary depending on geography and the population in question. When pericardial effusion is suspected, echocardiography usually confirms the diagnosis and allows assessment for signs of hemodynamic instability. Cross-sectional imaging with computed tomography (CT) can help to localize and quantify (as in a loculated effusion) or assess for pericardial pathology (pericardial thickening, constrictive pericarditis).