Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
Corneal and Retinal Topography: computerized tests that maps the surface of the retina, or the curvature of the cornea.
Fluorescein Angiogram: evaluation of blood circulation in the retina.
Dilated Pupillary Exam: special drops expand the pupil, which then allows doctors to examine the retina.
Slit-Lamp Exam: By shining a small beam of light in the eye, eye doctors can diagnose cataracts, glaucoma, retinal detachment, macular degeneration, injuries to the cornea, and dry eye disease.
Ultrasound: Provides a picture of the eye’s internal structure, and can evaluate ocular tumors, or the retina if its suffering from cataracts or hemorrhages.
The United States Preventive Services Task Force as of 2013 states there is insufficient evidence to recommend for or against screening for glaucoma. Therefore, there is no national screening program in the US. Screening, however, is recommended starting at age 40 by the American Academy of Ophthalmology.
There is a glaucoma screening program in the UK. Those at risk are advised to have a dilated eye examination at least once a year.
Diagnosis is made by an ophthalmologist or optometrist based on the clinical presentation. One indication can be the Amsler sign, which is the presence of blood (hyphema) in the aspirated vitreous fluid, in paracentesis of the anterior chamber. This is caused due to iris atrophy usually seen in FHI and exposure of the fragile iris vasculature to the vitreous fluid. The sudden change of pressure in the anterior chamber upon suction induced by the paracentesis, or during a cataract surgery, causes bursting of the fragile superficial iris capillaries resultsing in micro-bleeding. This is one clinical diagnostic sign of FHI slit lamp examination shows stringy keratic precipitates
Screening for glaucoma is usually performed as part of a standard eye examination performed by optometrists and ophthalmologists. Testing for glaucoma should include measurements of the intraocular pressure via tonometry, anterior chamber angle examination or gonioscopy, and examination of the optic nerve to look for any visible damage to it, or change in the cup-to-disc ratio and also rim appearance and vascular change. A formal visual field test should be performed. The retinal nerve fiber layer can be assessed with imaging techniques such as optical coherence tomography, scanning laser polarimetry, and/or scanning laser ophthalmoscopy (Heidelberg retinal tomogram).
Owing to the sensitivity of all methods of tonometry to corneal thickness, methods such as Goldmann tonometry should be augmented with pachymetry to measure the central corneal thickness (CCT). A thicker-than-average cornea can result in a pressure reading higher than the 'true' pressure whereas a thinner-than-average cornea can produce a pressure reading lower than the 'true' pressure.
Because pressure measurement error can be caused by more than just CCT (i.e., corneal hydration, elastic properties, etc.), it is impossible to 'adjust' pressure measurements based only on CCT measurements. The frequency doubling illusion can also be used to detect glaucoma with the use of a frequency doubling technology perimeter.
Examination for glaucoma also could be assessed with more attention given to sex, race, history of drug use, refraction, inheritance and family history.
Glaucoma has been classified into specific types:
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
Causes of anisocoria range from benign (normal) to life-threatening conditions.
Clinically, it is important to establish whether anisocoria is more apparent in dim or bright light to clarify whether the larger pupil or smaller pupil is the abnormal one.
- Anisocoria which is worsened (greater asymmetry between the pupils) in the dark suggests the small pupil (which should dilate in dark conditions) is the abnormal pupil and suggests Horner's syndrome or mechanical anisocoria. In Horner's syndrome sympathetic nerve fibers have a defect, therefore the pupil of the involved eye will not dilate in darkness. If the smaller pupil dilates in response to instillation of apraclonidine eye drops, this suggests Horner's syndrome is present.
- Anisocoria which is greater in bright light suggests the larger pupil (which should constrict in bright conditions) is the abnormal pupil. This may suggest Adie tonic pupil, pharmacologic dilation, oculomotor nerve palsy, or damaged iris.
A relative afferent pupillary defect (RAPD) also known as a Marcus Gunn pupil does not cause anisocoria.
Some of the causes of anisocoria are life-threatening, including Horner's syndrome (which may be due to carotid artery dissection) and oculomotor nerve palsy (due to a brain aneurysm, uncal herniation, or head trauma).
If the examiner is unsure whether the abnormal pupil is the constricted or dilated one, and if a one-sided drooping of the eyelid is present then the abnormally sized pupil can be presumed to be the one on the side of the ptosis. This is because Horner's syndrome and oculomotor nerve lesions both cause ptosis.
Anisocoria is usually a benign finding, unaccompanied by other symptoms (physiological anisocoria). Old face photographs of patients often help to diagnose and establish the type of anisocoria.
It should be considered an emergency if a patient develops acute onset anisocoria. These cases may be due to brain mass lesions which cause oculomotor nerve palsy. Anisocoria in the presence of confusion, decreased mental status, severe headache, or other neurological symptoms can forewarn a neurosurgical emergency. This is because a hemorrhage, tumor or another intracranial mass can enlarge to a size where the third cranial nerve (CN III) is compressed, which results in uninhibited dilatation of the pupil on the same side as the lesion.
Mydriatic/cycloplegic agents, such as topical homatropine, which is similar in action to atropine, are useful in breaking and preventing the formation of posterior synechia by keeping the iris dilated and away from the crystalline lens. Dilation of the pupil in an eye with the synechia can cause the pupil to take an irregular, non-circular shape (Dyscoria) as shown in the photograph. If the pupil can be fully dilated during the treatment of iritis, the prognosis for recovery from synechia is good. This is a treatable status.
To subdue the inflammation, use topical corticosteroids. If the intra-ocular pressure is elevated then use a PGA such as Travatan Z.
A mydriatic is an agent that induces dilation of the pupil. Drugs such as tropicamide are used in medicine to permit examination of the retina and other deep structures of the eye, and also to reduce painful ciliary muscle spasm (see cycloplegia). Phenylephrine (e.g. Cyclomydril) is used if strong mydriasis is needed for a surgical intervention. One effect of administration of a mydriatic is intolerance to bright light (photophobia). Purposefully-induced mydriasis via mydriatics is also used as a diagnostic test for Horner's syndrome.
Pigment dispersion syndrome (PDS) is an affliction of the eye that can lead to a form of glaucoma known as pigmentary glaucoma. It takes place when pigment cells slough off from the back of the iris and float around in the aqueous humor. Over time, these pigment cells can accumulate in the anterior chamber in such a way that it can begin to clog the trabecular meshwork (the major site of aqueous humour drainage), which can in turn prevent the aqueous humour from draining and therefore increases the pressure inside the eye. With PDS, the intraocular pressure tends to spike at times and then can return to normal. Exercise has been shown to contribute to spikes in pressure as well. When the pressure is great enough to cause damage to the optic nerve, this is called pigmentary glaucoma. As with all types of glaucoma, when damage happens to the optic nerve fibers, the vision loss that occurs is irreversible and painless.
This condition is rare, but occurs most often in Caucasians, particularly men, and the age of onset is relatively low: mid 20s to 40s. As the crystalline lens hardens with age, the lens zonules pull away from the iris and the syndrome lessens and stops. Most sufferers are nearsighted.
There is no cure yet, but pigmentary glaucoma can be managed with eye drops or treated with simple surgeries. One of the surgeries is the YAG laser procedure in which a laser is used to break up the pigment clogs, and reduce pressure. If caught early and treated, chances of glaucoma are greatly reduced. Sufferers are often advised not to engage in high-impact sports such as long-distance running or martial arts, as strong impacts can cause more pigment cells to slough off.
A 2016 Cochrane Review sought to determine the effectiveness of YAG laser iridotomy versus no laser iridotomy for pigment dispersion syndrome and pigmentary glaucoma, in 195 participants, across five studies. No clear benefits in preventing loss of visual field were found for eyes treated with peripheral laser iridotomy. There was weak evidence suggesting that laser iridotomy could be more effective in lowering intraocular pressure in eyes versus no treatment.
Anisocoria is a common condition, defined by a difference of 0.4 mm or more between the sizes of the pupils of the eyes.
Anisocoria has various causes:
- Physiological anisocoria: About 20% of normal people have a slight difference in pupil size which is known as physiological anisocoria. In this condition, the difference between pupils is usually less than 1 mm.
- Horner's syndrome
- Mechanical anisocoria: Occasionally previous trauma, eye surgery, or inflammation (uveitis, angle closure glaucoma) can lead to adhesions between the iris and the lens.
- Adie tonic pupil: Tonic pupil is usually an isolated benign entity, presenting in young women. It may be associated with loss of deep tendon reflex (Adie's syndrome). Tonic pupil is characterized by delayed dilation of iris especially after near stimulus, segmental iris constriction, and sensitivity of pupil to a weak solution of pilocarpine.
- Oculomotor nerve palsy: Ischemia, intracranial aneurysm, demyelinating diseases (e.g., multiple sclerosis), head trauma, and brain tumors are the most common causes of oculomotor nerve palsy in adults. In ischemic lesions of the oculomotor nerve, pupillary function is usually spared whereas in compressive lesions the pupil is involved.
- Pharmacological agents with anticholinergic or sympathomimetic properties will cause anisocoria, particularly if instilled in one eye. Some examples of pharmacological agents which may affect the pupils include pilocarpine, cocaine, tropicamide, MDMA, dextromethorphan, and ergolines. Alkaloids present in plants of the genera "Brugmansia" and "Datura", such as scopolamine, may also induce anisocoria.
- Migraines
Cycloplegic drugs are generally muscarinic receptor blockers. These include atropine, cyclopentolate, homatropine, scopolamine and tropicamide. They are indicated for use in cycloplegic refraction (to paralyze the ciliary muscle in order to determine the true refractive error of the eye) and the treatment of uveitis. All cycloplegics are also mydriatic (pupil dilating) agents and are used as such during eye examination to better visualize the retina.
When cycloplegic drugs are used as a mydriatic to dilate the pupil, the pupil in the normal eye regains its function when the drugs are metabolized or carried away. Some cycloplegic drugs can cause dilation of the pupil for several days. Usually the ones used by ophthalmologists or optometrists wear off in hours, but when the patient leaves the office strong sunglasses are provided for comfort.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.
Penetrating karatoplasty and endothelial keratoplasty can be used as treatments for severe cases of ICE [2,8]. Because glaucoma and elevated intraocular pressure are often present in ICE patients, long term follow up may be needed to ensure adequate intraocular pressures are maintained [2,7]
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
As the name implies, it is the bulge of weak sclera lined by ciliary body, which occurs about 2–3 mm away from the limbus. Its common causes are thinning of sclera following perforating injury, scleritis & absolute glaucoma.
it is part of anterior staphyloma
A synechia is an eye condition where the iris adheres to either the cornea (i.e. "anterior synechia") or lens (i.e. "posterior synechia"). Synechiae can be caused by ocular trauma, iritis or iridocyclitis and may lead to certain types of glaucoma. It is sometimes visible on careful examination but usually more easily through an ophthalmoscope or slit-lamp.
Anterior synechia causes closed angle glaucoma, which means that the iris closes the drainage way of aqueous humour which in turn raises the intraocular pressure. Posterior synechia also cause glaucoma, but with a different mechanism. In posterior synechia, the iris adheres to the lens, blocking the flow of aqueous humor from the posterior chamber to the anterior chamber. This blocked drainage raises the intraocular pressure.
It is the name given to the localised bulge in limbal area, lined by the root of the iris. It results due to ectasia of weak scar tissue formed at the limbus, following healing of a perforating injury or a peripheral corneal ulcer. There may be associated secondary angle closure glaucoma, may cause progression of the bulge if not treated. Defective vision occurs due to marked corneal astigmatism. Treatment consists of localised staphylectomy under heavy doses of oral steroids.
Plateau iris is a medical condition of the eye resulting from pushing of peripheral part of iris forward, by the large or anteriorly placed ciliary body causing angle closer glaucoma.
http://image.slidesharecdn.com/gonioscopy-140211072931-phpapp01/95/gonioscopy-70-638.jpg?cb=1392103893
this configuration is usually corrected by iridectomy.
if the glaucoma persists even after iridectomy then it is called plateau iris syndrome, this is managed by miotics or laser peripheral iridoplasty
Clinical exam may reveal sectoral paresis of the iris sphincter or vermiform iris movements. The tonic pupil may become smaller (miotic) over time which is referred to as "little old Adie's". Testing with low dose (1/8%) pilocarpine may constrict the tonic pupil due to cholinergic denervation supersensitivity. A normal pupil will not constrict with the dilute dose of pilocarpine. CT scans and MRI scans may be useful in the diagnostic testing of focal hypoactive reflexes.
Adie's syndrome is not life-threatening or disabling. As such, there is no mortality rate relating to the condition; however, loss of deep tendon reflexes is permanent and may progress over time.
Cycloplegia is paralysis of the ciliary muscle of the eye, resulting in a loss of accommodation. Because of the paralysis of the ciliary muscle, the curvature of the lens can no longer be adjusted to focus on nearby objects. This results in similar problems as those caused by presbyopia, in which the lens has lost elasticity and can also no longer focus on close-by objects. Cycloplegia with accompanying mydriasis (dilation of pupil) is usually due to topical application of muscarinic antagonists such as atropine and cyclopentolate.
The disease is chronic and often progresses slowly. Prognosis is generally poor when associated with glaucoma [1,2].
The main goals of treatment are to decrease the risk of rebleeding within the eye, corneal blood staining, and atrophy of the optic nerve. Small hyphemas can usually be treated on an outpatient basis. Most treatment plans consist of elevating the head at night, wearing a patch and shield, and controlling any increase in intraocular pressure. Surgery may be necessary for non-resolving hyphemas, or hyphaemas that are associated with high pressure that does not respond to medication. Surgery can be effective for cleaning out the anterior chamber and preventing corneal blood staining.
Elevation of the head of the bed by approximately 45 degrees (so that the hyphema can settle out inferiorly and avoid obstruction of vision, as well as to facilitate resolution). Bedrest may be considered, although evidence suggests that it does not improve outcomes. Wearing of an eye shield at night time (to prevent accidental rubbing of the eyes during sleep, which can precipitate a rebleed). An eye patch should be worn throughout the day to protect the injured eye.
If pain management is necessary, acetaminophen can be used. Aspirin and ibuprofen should be avoided, because they interfere with platelets' ability to form a clot and consequently increase the risk of additional bleeding. Sedation is not usually necessary for patients with hyphema. It is controversial amongst ophthalmologists whether a steroid medication or a dilating eye drop (mydriatic) should be used in treatment of hyphema. Steroids aim to reduce the amount of inflammation, but also cause side effects. Dilating drops aim to increase comfort from the traumatized iris as well as reduce bleeding, but can also cause the pupil to be fixed in a dilated state via posterior synechiae (adhesions).
Aminocaproic or tranexamic acids are often prescribed for hyphema. Although these medications actually cause hyphemas to take longer to clear, they reduce the risk of rebleeding and its associated complications. Tranexamic and aminocaproic acids inhibit the conversion of plasminogen to plasmin, plasmin being the agent of fibrin breakdown in blood clots. Keeping the clots intact allows time for the vessels to heal properly and avert a secondary bleed.