Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Identification of the snake is important in planning treatment in certain areas of the world, but is not always possible. Ideally the dead snake would be brought in with the person, but in areas where snake bite is more common, local knowledge may be sufficient to recognize the snake. However, in regions where polyvalent antivenoms are available, such as North America, identification of snake is not a high priority item. Attempting to catch or kill the offending snake also puts one at risk for re-envenomation or creating a second person bitten, and generally is not recommended.
The three types of venomous snakes that cause the majority of major clinical problems are vipers, kraits, and cobras. Knowledge of what species are present locally can be crucial, as is knowledge of typical signs and symptoms of envenomation by each type of snake. A scoring system can be used to try to determine the biting snake based on clinical features, but these scoring systems are extremely specific to particular geographical areas.
It is not an easy task determining whether or not a bite by any species of snake is life-threatening. A bite by a North American copperhead on the ankle is usually a moderate injury to a healthy adult, but a bite to a child's abdomen or face by the same snake may be fatal. The outcome of all snakebites depends on a multitude of factors: the size, physical condition, and temperature of the snake, the age and physical condition of the person, the area and tissue bitten (e.g., foot, torso, vein or muscle), the amount of venom injected, the time it takes for the person to find treatment, and finally the quality of that treatment.
There are no tests required to diagnose widow spider bites, or latrodectism symptoms. The diagnosis is clinical and based on historic evidence of widow spider bites. Pathognomonic symptoms such as localized sweating and piloerection provide evidence of envenomation. Unlike the brown recluse, the widow species are easily identified by most people.
Diagnosis is obvious in most people reporting contact with a "Latrodectus" spider. However, without a spider, either through inability to communicate or unawareness, the diagnosis may be missed as symptoms overlap with a variety of other serious clinical syndromes such as tetanus or acute abdomen. Blood values are typically unimportant but may be needed to show myocarditis or dehydration from vomiting.
Diagnosis is based on history given by patient, including recent medications.
With discontinuation of offending agent, symptoms usually disappear within 4–5 days.
Corticosteroids, antihistamines, and analgesics are the main line of treatment. The choice depends on the severity of the reaction.
Use of plasmapheresis has also been described.
The vast majority of victims fully recover without significant lasting problems (sequelae). Death from latrodectism is reported as high as 5% to as low as 0.2%. In the United States, where antivenom is rarely used, there have been no deaths reported for decades.
Despite frequent reference to youth and old age being a predisposing factor it has been demonstrated that young children appear to be at lowest risk for a serious bite, perhaps owing to the rapid use of antivenom. Bite victims who are very young, old, hypotensive, pregnant or who have existing heart problems are reported to be the most likely to suffer complications. However, due to the low incidence of complications these generalizations simply refer to special complications (see Special circumstances).
Reliable diagnoses of spider bites require three conditions: first, there should be clinical effects of the bite at the time or soon afterwards, although there are no symptoms universally diagnostic of a spider bite, and bites by some spiders, e.g. "Loxosceles" species, may initially be painless; second, the spider should be collected, either at the time of the bite or immediately afterwards; and third, the spider should be identified by an expert arachnologist.
Spider bites are commonly misdiagnosed. A review published in 2016 showed that 78% of 134 published medical case studies of supposed spider bites did not meet the necessary criteria for a spider bite to be verified. In the case of the two genera with the highest reported number of bites, "Loxosceles" and "Latrodectus", spider bites were not verified in over 90% of the reports. Even when verification had occurred, details of the treatment and its effects were often lacking. Unverified bite reports likely represent many other conditions, both infectious and non-infectious, which can be confused with spider bites. Many of these conditions are far more common and more likely to be the source of necrotic wounds. An affected person may think that a wound is a spider bite when it is actually an infection with methicillin-resistant "Staphylococcus aureus" (MRSA). False reports of spider bites in some cases have led to misdiagnosis and mistreatment, with potentially life-threatening consequences.
The spider biting apparatus is short and bites are only possible in experimental animals with pressure on the spider's back. Thus many bites occur when a spider is trapped in a shirt or pant sleeve. There is no commercial chemical test to determine if the venom is from a brown recluse. The bite itself is not usually painful. Many necrotic lesions are erroneously attributed to the bite of the brown recluse. (See Note). Skin wounds are common and infections will lead to necrotic wounds. Thus many terrible skin infections are attributed falsely to the brown recluse. Many suspected bites occurred in areas outside of its natural habitat. A wound found one week later may be misattributed to the spider. The diagnosis is further complicated by the fact that no attempt is made to positively identify the suspected spider. Because of this, other, non-necrotic species are frequently mistakenly identified as a brown recluse. Several certified arachnologists are able to positively identify a brown recluse specimen on request.
Reports of presumptive brown recluse spider bites reinforce improbable diagnoses in regions of North America where the spider is not endemic such as Florida, Pennsylvania, and California.
A new mnemonic device, "NOT RECLUSE", has been suggested as a tool to help professionals more objectively exclude skin lesions that were suspected to be loxosceles.
Numerous, Occurrence( wrong geography) Timing( wrong season), Red Center, Elevated, Chronic, Large (more than 10 cm), Ulcerates too quickly (less than a week), Swollen, Exudative
Estimating the number of spider bites that occur is difficult as the spider involvement may not be confirmed or identified. Several researchers recommend only evaluating verified bites: those that have an eyewitness to the bite, the spider is brought in, and identified by expert. With "suspected arachnidism" the diagnosis came without a spider positively identified.
Despite being one of the few medically important spider bites, there is no established treatment for the bite of a Loxosceles spider. Physicians wait for the body to heal itself, and assist with cosmetic appearance. There are, however, some remedies currently being researched.
Treatment is usually debridement and excision, with amputation necessary in many cases. Water-soluble antibiotics (such as penicillin) alone are not effective because they do not penetrate ischaemic muscles sufficiently to be effective. Penicillin is effective against C. perfringens. When gas gangrene occurs in such regions as the abdominal cavity, the patient can be treated in a hyperbaric chamber. which contains a pressurized oxygen-rich atmosphere. The oxygen saturates the infected tissues and thereby prevents the growth of the obligately anaerobic clostridia. The growth of C. perfringens is inhibited when the availability of oxygen is equivalent to a partial pressure of around 9–10 kPa (compare to 4–5 kPa in venous blood under normal conditions, with 11–13 kPa in arteries and 21 kPa in air at sea level), so if the treatment is started early, this condition can mostly be cured.
Early symptoms of EVD may be similar to those of other diseases common in Africa, including malaria and dengue fever. The symptoms are also similar to those of other viral hemorrhagic fevers such as Marburg virus disease.
The complete differential diagnosis is extensive and requires consideration of many other infectious diseases such as typhoid fever, shigellosis, rickettsial diseases, cholera, sepsis, borreliosis, EHEC enteritis, leptospirosis, scrub typhus, plague, Q fever, candidiasis, histoplasmosis, trypanosomiasis, visceral leishmaniasis, measles, and viral hepatitis among others.
Non-infectious diseases that may result in symptoms similar to those of EVD include acute promyelocytic leukemia, hemolytic uremic syndrome, snake envenomation, clotting factor deficiencies/platelet disorders, thrombotic thrombocytopenic purpura, hereditary hemorrhagic telangiectasia, Kawasaki disease, and warfarin poisoning.
Contact tracing is considered important to contain an outbreak. It involves finding everyone who had close contact with infected individuals and watching for signs of illness for 21 days. If any of these contacts comes down with the disease, they should be isolated, tested and treated. Then the process is repeated by tracing the contacts' contacts.
Gas gangrene (also known as clostridial myonecrosis and myonecrosis) is a bacterial infection that produces gas in tissues in gangrene. This deadly form of gangrene usually is caused by "Clostridium perfringens" bacteria. It is a medical emergency. About 1000 cases of gas gangrene occur yearly in the United States.
Myonecrosis is a condition of necrotic damage, specific to muscle tissue. It is often seen in infections with "C. perfringens" or any of myriad soil-borne anaerobic bacteria. Bacteria cause myonecrosis by specific exotoxins. These microorganisms are opportunistic and, in general, enter the body through significant skin breakage. Gangrenous infection by soil-borne bacteria was common in the combat injuries of soldiers well into the 20th century, because of nonsterile field surgery and the basic nature of care for severe projectile wounds.
Other causes of myonecrosis include envenomation by snakes of the "Bothrops" genus (family Viperidae), ischemic necrosis, caused by vascular blockage (e.g., diabetes type II), tumours that block or hoard blood supply, and disseminated intravascular coagulation or other thromboses.
Immediate treatment consists of rinsing the bite site in cold water. If not too painful, ice the bite site. This constricts the blood vessels so the venom does not spread. Also recommended is papain, an enzyme that breaks down protein. Papain can be found in meat tenderizer and papaya. This deactivates the majority of the centipede venom's proteins. Depending on the type of centipede and level of envenomation, this treatment may not degrade the entire venom dose and residual pain will remain.
Individuals who are bitten by centipedes are sometimes given a urine test to check for muscle tissue breakdown and/or an EKG to check for heart and vascular problems.
Reassurance and pain relief is often given in the form of painkillers, such as non-steroidal anti-inflammatory medications, antihistamines and anti-anxiety medications. In a severe case the affected limb can be elevated and administered diuretic medications.
Wound care principles and sometimes antibiotics are used to keep the wound itself from becoming infected or necrotic.
In Barbados, a folk remedy involves applying a freshly cut onion to the site of the injury "bite" for 10 minutes. Repeat until relief is obtained.
Marburgviruses are World Health Organization Risk Group 4 Pathogens, requiring Biosafety Level 4-equivalent containment, laboratory researchers have to be properly trained in BSL-4 practices and wear proper personal protective equipment.
Since marburgviruses are not spreading via aerosol, the most straightforward prevention method during MVD outbreaks is to avoid direct (skin-to-skin) contact with patients, their excretions and body fluids, or possibly contaminated materials and utensils. Patients ought to be isolated but still have the right to be visited by family members. Medical staff should be trained and apply strict barrier nursing techniques (disposable face mask, gloves, goggles, and a gown at all times). Traditional burial rituals, especially those requiring embalming of bodies, ought to be discouraged or modified, ideally with the help of local traditional healers.
There is no one single test for confirming that breathlessness is caused by pulmonary edema; indeed, in many cases, the cause of shortness of breath is probably multifactorial.
Low oxygen saturation and disturbed arterial blood gas readings support the proposed diagnosis by suggesting a pulmonary shunt. Chest X-ray will show fluid in the alveolar walls, Kerley B lines, increased vascular shadowing in a classical batwing peri-hilum pattern, upper lobe diversion (increased blood flow to the superior parts of the lung), and possibly pleural effusions. In contrast, patchy alveolar infiltrates are more typically associated with noncardiogenic edema
Lung ultrasound, employed by a healthcare provider at the point of care, is also a useful tool to diagnose pulmonary edema; not only is it accurate, but it may quantify the degree of lung water, track changes over time, and differentiate between cardiogenic and non-cardiogenic edema.
Especially in the case of cardiogenic pulmonary edema, urgent echocardiography may strengthen the diagnosis by demonstrating impaired left ventricular function, high central venous pressures and high pulmonary artery pressures.
Blood tests are performed for electrolytes (sodium, potassium) and markers of renal function (creatinine, urea). Liver enzymes, inflammatory markers (usually C-reactive protein) and a complete blood count as well as coagulation studies (PT, aPTT) are also typically requested. B-type natriuretic peptide (BNP) is available in many hospitals, sometimes even as a point-of-care test. Low levels of BNP (<100 pg/ml) suggest a cardiac cause is unlikely.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
A centipede bite is an injury resulting from the action of a centipede's forcipules, pincer-like appendages that pierce the skin and inject venom into the wound. Such a wound is not technically a bite, as the forcipules are modified first pair of legs rather than true mouthparts. Clinically, the wound is viewed as a cutaneous condition characterized by paired hemorrhagic marks that form a chevron shape caused by the large paired forcipules of the centipede.
The centipede's venom causes pain and swelling in the area of the bite, and may cause other reactions throughout the body. The majority of bites are not life-threatening to humans and present the greatest risk to children and those who develop allergic reactions.
Many of these health problems continue to cause suffering even after the animals are rescued. Strained animal shelters or humane societies, forced to prioritize when dealing with numerous rescued animals, may be unable to provide immediate treatment to many animals. Furthermore, many of the rescued animals, due to health or behavioral problems, may not be suitable for adoption. Euthanasia, even in cases where the animals are not beyond rehabilitation, is often the only option for rescued animals. The effects of hoarding on the health and socialization of the animals involved are severe and lasting, taking heavy tolls on both their physical and psychological well-being.
Animal hoarding also causes many health problems for the people involved. Hoarders, by definition, fail to correct the deteriorating sanitary conditions of their living spaces, and this gives rise to several health risks for those living in and around hoarding residences. Animal hoarding is at the root of a string of human health problems including poor sanitation, fire hazards, zoonotic diseases, envenomation, and neglect of oneself and dependents.
Treatment and prognosis depend on the underlying condition. For example, in thiamine deficiency, treatment would be the immediate administration of vitamin B1.
Aponeurotic and congenital ptosis may require surgical correction if severe enough to interfere with vision or if cosmetics is a concern.
Treatment depends on the type of ptosis and is usually performed by an ophthalmic plastic and reconstructive surgeon, specializing in diseases and problems of the eyelid.
Surgical procedures include:
- Levator resection
- Müller muscle resection
- Frontalis sling operation (preferred option for oculopharyngeal muscular dystrophy)
Non-surgical modalities like the use of "crutch" glasses or Ptosis crutches or special scleral contact lenses to support the eyelid may also be used.
Ptosis that is caused by a disease may improve if the disease is treated successfully, although some related diseases, such as oculopharyngeal muscular dystrophy currently have no treatments or cures.
Ophthalmoparesis can result from disorders of various parts of the eye and nervous system:
- Infection around the eye. Ophthalmoplegia is an important finding in orbital cellulitis.
- The orbit of the eye, including mechanical restrictions of eye movement, as in Graves disease.
- The muscle, as in progressive external ophthalmoplegia or Kearns-Sayre syndrome.
- The neuromuscular junction, as in myasthenia gravis.
- The relevant cranial nerves (specifically the oculomotor, trochlear, and abducens), as in cavernous sinus syndrome or raised intracranial pressure.
- The brainstem nuclei of these nerves, as in certain patterns of brainstem stroke such as Foville's syndrome.
- White matter tracts connecting these nuclei, as in internuclear ophthalmoplegia, an occasional finding in multiple sclerosis.
- Dorsal midbrain structures, as in Parinaud's syndrome.
- Certain parts of the cerebral cortex (including the frontal eye fields), as in stroke.
- Toxic envenomation by mambas, taipans, and kraits.
Thiamine deficiency can cause ophthalmoparesis in susceptible persons; this is part of the syndrome called Wernicke encephalopathy. The causal pathway by which this occurs is unknown. Intoxication with certain substances, such as phenytoin, can also cause ophthalmoparesis.