Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Familial LPL deficiency should be considered in anyone with severe hypertriglyceridemia and the chylomicronemia syndrome. The absence of secondary causes of severe hypertriglyceridemia (like e.g. diabetes, alcohol, estrogen-, glucocorticoid-, antidepressant- or isotretinoin-therapy, certain antihypertensive agents, and paraproteinemic disorders) increases the possibility of LPL deficiency. In this instance besides LPL also other loss-of-function mutations in genes that regulate catabolism of triglyceride-rich lipoproteins (like e.g. ApoC2, ApoA5, LMF-1, GPIHBP-1 and GPD1) should also be considered
The diagnosis of familial lipoprotein lipase deficiency is finally confirmed by detection of either homozygous or compound heterozygous pathogenic gene variants in "LPL" with either low or absent lipoprotein lipase enzyme activity.
Lipid measurements
· Milky, lipemic plasma revealing severe hyperchylomicronemia;
· Severely elevated fasting plasma triglycerides (>2000 mg/dL);
LPL enzyme
· Low or absent LPL activity in post-heparin plasma;
· LPL mass level reduced or absent in post-heparin plasma;
Molecular genetic testing
The LPL gene is located on the short (p) arm of chromosome 8 at position 22. More than 220 mutations in the LPL gene have been found to cause familial lipoprotein lipase deficiency so far.
When the cause of hypoglycemia is not obvious, the most valuable diagnostic information is obtained from a blood sample (a "critical specimen") drawn during the hypoglycemia. Detectable amounts of insulin are abnormal and indicate that hyperinsulinism is likely to be the cause. Other aspects of the person's metabolic state, especially low levels of free fatty acids, beta-hydroxybutyrate and ketones, and either high or low levels of C-peptide and proinsulin can provide confirmation.
Clinical features and circumstances can provide other indirect evidence of hyperinsulinism. For instance, babies with neonatal hyperinsulinism are often large for gestational age and may have other features such as enlarged heart and liver. Knowing that someone takes insulin or oral hypoglycemic agents for diabetes obviously makes insulin excess the presumptive cause of any hypoglycemia.
Most sulfonylureas and aspirin can be detected on a blood or urine drug screen tests, but insulin cannot. Endogenous and exogenous insulin can be distinguished by the presence or absence of C-peptide, a by-product of endogenous insulin secretion which is not present in pharmaceutical insulin. Some of the newer analog insulins are not measured by the usual insulin level assays.
Treatment of LPLD has two different objectives: immediate prevention of pancreatitis attacks and long term reduction of cardiovascular disease risk. Treatment is mainly based on medical nutrition therapy to maintain plasma triglyceride concentration below 11,3 mmol/L (1000 mg/dL). Maintenance of triglyceride levels below 22,6 mmol/L (2000 mg/dL) prevents in general from recurrent abdominal pain.
Strict low fat diet and avoidance of simple carbohydrates
Restriction of dietary fat to not more than 20 g/day or 15% of the total energy intake is usually sufficient to reduce plasma triglyceride concentration, although many patients report that to be symptom free a limit of less than 10g/day is optimal. Simple carbohydrates should be avoided as well. Medium-chain triglycerides can be used for cooking, because they are absorbed into the portal vein without becoming incorporated into chylomicrons. Fat-soluble vitamins A, D, E, and K, and minerals should be supplemented in patients with recurrent pancreatitis since they often have deficiencies as a result of malabsorption of fat. However, the diet approach is difficult to sustain for many of the patients.
Lipid lowering drugs
Lipid-lowering agents such as fibrates and omega-3-fatty acids can be used to lower TG levels in LPLD, however those drugs are very often not effective enough to reach treatment goals in LPLD patients. Statins should be considered to lower elevated non-HDL-Cholesterol.
Additional measures are avoidance of agents known to increase endogenous triglyceride levels, such as alcohol, estrogens, diuretics, isotretinoin, anidepressants (e.g. sertraline) and b-adrenergic blocking agents.
Gene therapy
In 2012, the European Commission approved alipogene tiparvovec (Glybera), a gene therapy for adults diagnosed with familial LPLD (confirmed by genetic testing) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It was the first gene therapy to receive marketing authorization in Europe; it was priced at about $1 million per treatment, and as of 2016, only one person had been treated with it.
Acute hypoglycemia is reversed by raising the blood glucose. Glucagon should be injected intramuscularly or intravenously, or dextrose can be infused intravenously to raise the blood glucose. Oral administration of glucose can worsen the outcome, as more insulin is eventually produced. Most people recover fully even from severe hypoglycemia after the blood glucose is restored to normal. Recovery time varies from minutes to hours depending on the severity and duration of the hypoglycemia. Death or permanent brain damage resembling stroke can occur rarely as a result of severe hypoglycemia. See hypoglycemia for more on effects, recovery, and risks.
Further therapy and prevention depends upon the specific cause.
Most hypoglycemia due to excessive insulin occurs in people who take insulin for type 1 diabetes. Management of this hypoglycemia is sugar or starch by mouth (or in severe cases, an injection of glucagon or intravenous dextrose). When the glucose has been restored, recovery is usually complete. Prevention of further episodes consists of maintaining balance between insulin, food, and exercise. Management of hypoglycemia due to treatment of type 2 diabetes is similar, and the dose of the oral hypoglycemic agent may need to be reduced. Reversal and prevention of hypoglycemia is a major aspect of the management of type 1 diabetes.
Hypoglycemia due to drug overdose or effect is supported with extra glucose until the drugs have been metabolized. The drug doses or combination often needs to be altered.
Hypoglycemia due to a tumor of the pancreas or elsewhere is usually curable by surgical removal. Most of these tumors are benign. Streptozotocin is a specific beta cell toxin and has been used to treat insulin-producing pancreatic carcinoma.
Hyperinsulinism due to diffuse overactivity of beta cells, such as in many of the forms of congenital hyperinsulinism, and more rarely in adults, can often be treated with diazoxide or a somatostatin analog called octreotide. Diazoxide is given by mouth, octreotide by injection or continuous subcutaneous pump infusion. When congenital hyperinsulinism is due to focal defects of the insulin-secretion mechanism, surgical removal of that part of the pancreas may cure the problem. In more severe cases of persistent congenital hyperinsulinism unresponsive to drugs, a near-total pancreatectomy may be needed to prevent continuing hypoglycemia. Even after pancreatectomy, continuous glucose may be needed in the form of gastric infusion of formula or dextrose.
High dose glucocorticoid is an older treatment used for presumptive transient hyperinsulinism but incurs side effects with prolonged use.
Due to the strong link between PPID and insulin resistance, testing is recommended for all horses suspected or confirmed to be suffering from PPID. There are two tests commonly used for insulin resistance: the oral sugar test and fasting insulin blood concentration.
The fasting insulin concentration involves giving a horse a single flake of hay at 10 pm the night before testing, with blood being drawn the following morning. Both insulin and glucose blood levels are measured. Hyperinsulinemia suggests insulin resistance, but normal or low fasting insulin does not rule out PPID. This test is easy to perform, but is less sensitive than the oral sugar test. It is best used in cases where risks of laminitis make the oral sugar test potentially unsafe.
The oral sugar test also requires giving the horse only a single flake of hay at 10pm the night before the test. The following morning, karo corn syrup is given orally, and glucose and insulin levels are measured at 60 and 90 minutes after administration. Normal or excessively high insulin levels are diagnostic. However, equivocal test results require retesting at a later date, or performing a different test. A similar test is available outside the US, in areas where corn-syrup products are less readily available, where horses are given a morning meal of chaff with dextrose powder, and blood insulin levels are measured 2 hours later.
The dexamethasone suppression test involves administering dexamethasone, a synthetic glucocorticoid, to the horse, and measuring its serum cortisol levels before and 19–24 hours after injection. In a normal horse, dexamethasone administration results in negative feedback to the pituitary, resulting in decreased ACTH production from the pars distalis and, therefore, decreased synthesis of cortisol at the level of the adrenal gland. A horse with PPID, which has an overactive pars intermedia not regulated by glucocorticoid levels, does not suppress ACTH production and, therefore, cortisol levels remain high. False negatives can occur in early disease. Additionally, dexamethasone administration may increase the risk of laminitis in horses already prone to the disease. For these reasons, the dexamethasone suppression test is currently not recommended for PPID testing.
These blood tests are needed to diagnose insulinoma:
- glucose
- insulin
- C-peptide
If available, a proinsulin level might be useful, as well. Other blood tests may help rule out other conditions which can cause hypoglycemia.
Normally, endogenous insulin production is suppressed in the setting of hypoglycemia. A 72-hour fast, usually supervised in a hospital setting, can be done to see if insulin levels fail to suppress, which is a strong indicator of the presence of an insulin-secreting tumor.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Dubin–Johnson syndrome is similar to Rotor syndrome, but can be differentiated by:
Prognosis is good, and treatment of this syndrome is usually unnecessary. Most patients are asymptomatic and have normal lifespans. Some neonates present with cholestasis. Hormonal contraceptives and pregnancy may lead to overt jaundice and icterus (yellowing of the eyes and skin).
Galactosemic infants present clinical symptoms just days after the onset of a galactose diet. They include difficulty feeding, diarrhea, lethargy, hypotonia, jaundice, cataract, and hepatomegaly (enlarged liver). If not treated immediately, and many times even with treatment, severe mental retardation, verbal dyspraxia (difficulty), motor abnormalities, and reproductive complications may ensue. The most effective treatment for many of the initial symptoms is complete removal of galactose from the diet. Breast milk and cow's milk should be replaced with soy alternatives. Infant formula based on casein hydrolysates and dextrin maltose as a carbohydrate source can also be used for initial management, but are still high in galactose. The reason for long-term complications despite a discontinuation of the galactose diet is vaguely understood. However, it has been suggested that endogenous (internal) production of galactose may be the cause.
The treatment for galactosemic cataract is no different from general galactosemia treatment. In fact, galactosemic cataract is one of the few symptoms that is actually reversible. Infants should be immediately removed from a galactose diet when symptoms present, and the cataract should disappear and visibility should return to normal. Aldose reductase inhibitors, such as sorbinil, have also proven promising in preventing and reversing galactosemic cataracts. AR inhibitors hinder aldose reductase from synthesizing galactitol in the lens, and thus restricts the osmotic swelling of the lens fibers. Other AR inhibitors include the acetic acid compounds zopolrestat, tolrestat, alrestatin, and epalrestat. Many of these compounds have not been successful in clinical trials due to adverse pharmokinetic properties, inadequate efficacy and efficiency, and toxic side effects. Testing on such drug-treatments continues in order to determine potential long-term complications, and for a more detailed mechanism of how AR inhibitors prevent and reverse the galactosemic cataract.
Since the etiology is unconfirmed, diagnosis is generally accomplished when there is hyperammonemia present within 24–36 hours of birth and urea cycle defects can be excluded. Organic acidemias and other metabolic errors must also be excluded. The diagnostic criteria for hyperammonemia is ammonia blood levels higher than 35 µmol/L. This is accomplished by observing urine ketones, organic acids, enzyme levels and activities, and plasma and urine amino acids. Mild Transient Hyperammonemia is diagnosed when ammonia levels are between 40-50 µM, lasts for about 6–8 weeks, and has no related neurological problems. Severe Transient Hyperammonemia is diagnosed when ammonia levels are above 50 µM up to as much as 4000 µM. Severe Transient Hyperammonemia causes neurological problems as ammonia levels in the brain are too high, which can cause infant hyptotonia as well as neonatal seizures. Severe Transient Hyperammonemia can also cause respiratory distress syndrome. Chest x-rays may resemble hyaline membrane disease.
The best diagnostic tool to confirm adrenal insufficiency is the ACTH stimulation test; however, if a patient is suspected to be suffering from an acute adrenal crisis, immediate treatment with IV corticosteroids is imperative and should not be delayed for any testing, as the patient's health can deteriorate rapidly and result in death without replacing the corticosteroids.
Dexamethasone should be used as the corticosteroid if the plan is to do the ACTH stimulation test at a later time as it is the only corticosteroid that will not affect the test results.
If not performed during crisis, then labs to be run should include: random cortisol, serum ACTH, aldosterone, renin, potassium and sodium. A CT of the adrenal glands can be used to check for structural abnormalities of the adrenal glands. An MRI of the pituitary can be used to check for structural abnormalities of the pituitary. However, in order to check the functionality of the Hypothalamic Pituitary Adrenal (HPA) Axis the entire axis must be tested by way of ACTH stimulation test, CRH stimulation test and perhaps an Insulin Tolerance Test (ITT). In order to check for Addison’s Disease, the auto-immune type of primary adrenal insufficiency, labs should be drawn to check 21-hydroxylase autoantibodies.
The presence of presenile cataract, noticeable in galactosemic infants as young as a few days old, is highly associated with two distinct types of galactosemia: GALT deficiency and to a greater extent, GALK deficiency.
An impairment or deficiency in the enzyme, galactose-1-phosphate uridyltransferase (GALT), results in classic galactosemia, or Type I galactosemia. Classic galactosemia is a rare (1 in 47,000 live births), autosomal recessive disease that presents with symptoms soon after birth when a baby begins lactose ingestion. Symptoms include life-threatening illnesses such as jaundice, hepatosplenomegaly (enlarged spleen and liver), hypoglycemia, renal tubular dysfunction, muscle hypotonia (decreased tone and muscle strength), sepsis (presence of harmful bacteria and their toxins in tissues), and cataract among others. The prevalence of cataract among classic galactosemics is markedly less than among galactokinase-deficient patients due to the extremely high levels of galactitol found in the latter. Classic galactosemia patients typically exhibit urinary galactitol levels of only 98 to 800 mmol/mol creatine compared to normal levels of 2 to 78 mmol/mol creatine.
Galactokinase (GALK) deficiency, or Type II galactosemia, is also a rare (1 in 100,000 live births), autosomal recessive disease that leads to variable galactokinase activity levels: ranging from high GALK efficiency to undetectably-low GALK efficiency. The early onset of cataract is the main clinical manifestation of Type II galactosemics, most likely due to the high concentration of galactitol found in this population. GALK deficient patients exposed to high-galactose diets show extreme levels of galactitol in blood and urine. Studies on galactokinase-deficient patients have shown that nearly two-thirds of ingested galactose can be accounted for by galactose and galactitol levels in the urine. Urinary levels of galactitol in these subjects approach 2500 mmol/mol creatine as compared to 2 to 78 mmol/mol creatine in control patients.
A decrease in activity in the third major enzymes of galactose metabolism, UDP galactose-4'-epimerase (GALE), is the cause of Type III galactosemia. GALE deficiency is an extremely rare, autosomal recessive disease that appears to be most common among the Japanese population (1 in 23,000 live births among Japanese population). While the link between GALE deficiency and cataract prevalence seems to be ambiguous, experiments on this topic have been conducted. A recent 2000 study in Munich, Germany analyzed the activity levels of the GALE enzyme in various tissues and cells in patients with cataract. The experiment concluded that while patients with cataract seldom exhibited an acute decrease in GALE activity in blood cells, "the GALE activity in the lens of cataract patients was, on the other hand, significantly decreased". The study's results are depicted below. The extreme decrease in GALE activity in the lens of cataract patients seems to suggest an irrefutable connection between Type III galactosemia and cataract development.
A study was done by Hudak to find the differences between transient hyperammonemia of the newborn (THAN) and urea cycle enzyme deficiency(UCED) on 33 THAN victims and 13 UCED victims. Some of the clinical findings were not able to be measured in the THAN patients due to lack of equipment or lack of reported information in these 33 cases, so the numbers shown represent the number of positive clinical findings/out of the number cases in which the symptom could be observed or was documented. The results were as follows:
Respiratory distress occurred in 22/23 of THAN patients and only in 0/13 of UCED patients. Abnormal chest radiographs were found in 23/25 THAN victims, and 0/9 in UCED patients. The gestational age was less than 36 weeks in 25/31 THAN patients, but only 1/13 UCED patients. The birthweight was less than 2.5 kg in 27/31 THAN patients and in 2/12 UCED patients. A coma that lasted 48 hours or longer occurred in 12/17 THAN patients but only occurred in 1/12 UCED patients. Free ammonia (NH4+) levels greater than 1500 µM occurred in 17/29 THAN patients but only 1/13 UCED patients.
Along with obtaining a complete medical history, a series of biochemical tests are required in order to arrive at an accurate diagnosis that verifies the presence of the illness. In addition, imaging of the kidneys (for structure and presence of two kidneys) is sometimes carried out, and/or a biopsy of the kidneys. The first test will be a urinalysis to test for high levels of proteins, as a healthy subject excretes an insignificant amount of protein in their urine. The test will involve a 24-hour bedside urinary total protein estimation. The urine sample is tested for proteinuria (>3.5 g per 1.73 m per 24 hours). It is also examined for urinary casts, which are more a feature of active nephritis. Next a blood screen, comprehensive metabolic panel (CMP) will look for hypoalbuminemia: albumin levels of ≤2.5 g/dL (normal=3.5-5 g/dL). Then a Creatinine Clearance C test will evaluate renal function particularly the glomerular filtration capacity. Creatinine formation is a result of the breakdown of muscular tissue, it is transported in the blood and eliminated in urine. Measuring the concentration of organic compounds in both liquids evaluates the capacity of the glomeruli to filter blood. Electrolytes and urea levels may also be analysed at the same time as creatinine (EUC test) in order to evaluate renal function.
A lipid profile will also be carried out as high levels of cholesterol (hypercholesterolemia), specifically elevated LDL, usually with concomitantly elevated VLDL, is indicative of nephrotic syndrome.
A kidney biopsy may also be used as a more specific and invasive test method. A study of a sample’s anatomical pathology may then allow the identification of the type of glomerulonephritis involved. However, this procedure is usually reserved for adults as the majority of children suffer from minimum change disease that has a remission rate of 95% with corticosteroids. A biopsy is usually only indicated for children that are "corticosteroid resistant" as the majority suffer from focal and segmental glomeruloesclerosis.
Further investigations are indicated if the cause is not clear including analysis of auto-immune markers (ANA, ASOT, C3, cryoglobulins, serum electrophoresis), or ultrasound of the whole abdomen.
With a certain degree of clinical suspicion, the most useful initial test is the 24-hour urine levels of 5-HIAA (5-hydroxyindoleacetic acid), the end product of serotonin metabolism. Patients with carcinoid syndrome usually excrete more than 25 mg of 5-HIAA per day.
For localization of both primary lesions and metastasis, the initial imaging method is Octreoscan, where indium-111 labelled somatostatin analogues (octreotide) are used in scintigraphy for detecting tumors expressing somatostatin receptors. Median detection rates with octreoscan are about 89%, in contrast to other imaging techniques such as CT scan and MRI with detection rates of about 80%. Gallium-68 labelled somatostatin analogues such as Ga-DOTA-Octreotate (DOTATATE), performed on a PET/CT scanner is superior to conventional Octreoscan.
Usually, on a CT scan, a spider-like/crab-like change is visible in the mesentery due to the fibrosis from the release of serotonin. F-FDG PET/CT, which evaluate for increased metabolism of glucose, may also aid in localizing the carcinoid lesion or evaluating for metastases. Chromogranin A and platelets serotonin are increased.
There is no known cure at the moment but there are several things that can be done to relieve the symptoms. Moisturising products are very helpful to minimize the scaling/cracking, and anti-infective treatments are useful when appropriate because the skin is very susceptible to infection. Extra protein in the diet during childhood is also beneficial, to replace that which is lost through the previously mentioned "leaky" skin.
Steroid and retinoid products have been proven ineffective against Netherton syndrome, and may in fact make things worse for the affected individual.
Intravenous immunoglobulin has become established as the treatment of choice in Netherton's syndrome. This therapy reduces infection; enables improvement and even resolution of the skin and hair abnormalities, and dramatically improves quality of life of the patients; although exactly how it achieves this is not known. Given this; it is possible that the reason Netherton's usually is not very severe at or shortly after birth is due to a protective effect of maternal antibodies; which cross the placenta but wane by four to six months.
Most Cushing's syndrome cases are caused by corticosteroid medications, such as those used for asthma, arthritis, eczema and other inflammatory conditions. Consequently, most patients are effectively treated by carefully tapering off (and eventually stopping) the medication that causes the symptoms.
If an adrenal adenoma is identified, it may be removed by surgery. An ACTH-secreting corticotrophic pituitary adenoma should be removed after diagnosis. Regardless of the adenoma's location, most patients require steroid replacement postoperatively at least in the interim, as long-term suppression of pituitary ACTH and normal adrenal tissue does not recover immediately. Clearly, if both adrenals are removed, replacement with hydrocortisone or prednisolone is imperative.
In those patients not suited for or unwilling to undergo surgery, several drugs have been found to inhibit cortisol synthesis (e.g. ketoconazole, metyrapone) but they are of limited efficacy. Mifepristone is a powerful glucocorticoid type II receptor antagonist and, since it does not interfere with normal cortisol homeostatis type I receptor transmission, may be especially useful for treating the cognitive effects of Cushing's syndrome. However, the medication faces considerable controversy due to its use as an abortifacient. In February 2012, the FDA approved mifepristone to control high blood sugar levels (hyperglycemia) in adult patients who are not candidates for surgery, or who did not respond to prior surgery, with the warning that mifepristone should never be used by pregnant women.
Removal of the adrenals in the absence of a known tumor is occasionally performed to eliminate the production of excess cortisol. In some occasions, this removes negative feedback from a previously occult pituitary adenoma, which starts growing rapidly and produces extreme levels of ACTH, leading to hyperpigmentation. This clinical situation is known as Nelson's syndrome.
Urine and serum show raised levels of porphobilinogen.
Assay the red blood cells for the level of porphobilinogen deaminase.
The treatment of nephrotic syndrome can be symptomatic or can directly address the injuries caused to the kidney.
SMS is usually confirmed by blood tests called chromosome (cytogenetic) analysis and utilize a technique called FISH (fluorescent in situ hybridization). The characteristic micro-deletion was sometimes overlooked in a standard FISH test, leading to a number of people with the symptoms of SMS with negative results.
The recent development of the FISH for 17p11.2 deletion test has allowed more accurate detection of this deletion. However, further testing is required for variations of Smith–Magenis syndrome that are caused by a mutation of the "RAI1" gene as opposed to a deletion.
Children with SMS are often given psychiatric diagnoses such as autism, attention deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), attention deficit disorder (ADD) and/or mood disorders.