Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Rapid diagnosis is important to attempt to prevent further damage to the brain and further neurologic deficits. It is a diagnosis of exclusion, so a full work up for other possible etiologies (hepatic, uremic, infectious, oncologic) should be performed. Screening for heavy metals, as well as other toxins, should be done immediately as those are some of the most common causes and the patient can then remove themselves from the dangerous environment. In addition, a full examination of blood (CBC) and metabolites (CMP) should be done.
Blood tests, cerebrospinal fluid examination by lumbar puncture (also known as spinal tap), brain imaging studies, electroencephalography (EEG), and similar diagnostic studies may be used to differentiate the various causes of encephalopathy.
Diagnosis is frequently clinical. That is, no set of tests give the diagnosis, but the entire presentation of the illness with nonspecific test results informs the experienced clinician of the diagnosis.
Treatment is mainly for the symptoms that toxic encephalopathy brings upon victims, varying depending on how severe the case is. Diet changes and nutritional supplements may help some patients. To reduce or halt seizures, anticonvulsants may be prescribed. Dialysis or organ replacement surgery may be needed in some severe cases.
Management of affected individuals consists of immediate removal from exposure to the toxic substance(s), treatment of the common clinical manifestation of depression if present, and counselling for the provision of life strategies to help cope with the potentially debilitating condition.
The diagnosis of hepatic encephalopathy can only be made in the presence of confirmed liver disease (types A and C) or a portosystemic shunt (type B), as its symptoms are similar to those encountered in other encephalopathies. To make the distinction, abnormal liver function tests and/or ultrasound suggesting liver disease are required, and ideally liver biopsy. The symptoms of hepatic encephalopathy may also arise from other conditions, such as cerebral haemorrhage and seizures (both of which are more common in chronic liver disease). A CT scan of the brain may be required to exclude haemorrhage, and if seizure activity is suspected an electroencephalograph (EEG) study may be performed. Rarer mimics of encephalopathy are meningitis, encephalitis, Wernicke's encephalopathy and Wilson's disease; these may be suspected on clinical grounds and confirmed with investigations.
The diagnosis of hepatic encephalopathy is a clinical one, once other causes for confusion or coma have been excluded; no test fully diagnoses or excludes it. Serum ammonia levels are elevated in 90% of people, but not all hyperammonaemia (high ammonia levels) is associated with encephalopathy. A CT scan of the brain usually shows no abnormality except in stage IV encephalopathy, when cerebral oedema may be visible. Other neuroimaging modalities, such as magnetic resonance imaging (MRI), are not currently regarded as useful, although they may show abnormalities. Electroencephalography shows no clear abnormalities in stage 0, even if minimal HE is present; in stages I, II and III there are triphasic waves over the frontal lobes that oscillate at 5 Hz, and in stage IV there is slow delta wave activity. However, the changes in EEG are not typical enough to be useful in distinguishing hepatic encephalopathy from other conditions.
Once the diagnosis of encephalopathy has been made, efforts are made to exclude underlying causes (such as listed above in "causes"). This requires blood tests (urea and electrolytes, full blood count, liver function tests), usually a chest X-ray, and urinalysis. If there is ascites, diagnostic paracentesis (removal of a fluid sample with a needle) may be required to identify spontaneous bacterial peritonitis (SBP).
It can be diagnosed clinically in the appropriate context, but may be difficult to confirm radiologically using conventional imaging techniques. Changes are more prominent on MRI than on CT, but often take days or weeks after acute symptom onset to develop. Imaging by MRI typically demonstrates areas of hyperintensity on T2-weighted images.
Treating the underlying cause of the disorder may improve or reverse symptoms. However, in some cases, the encephalopathy may cause permanent structural changes and irreversible damage to the brain. These permanent deficits can be considered a form of stable dementia. Some encephalopathies can be fatal.
Paracetamol may be quantified in blood, plasma, or urine as a diagnostic tool in clinical poisoning situations or to aid in the medicolegal investigation of suspicious deaths. The concentration in serum after a typical dose of paracetamol usually peaks below 30 mg/l, which equals 200 µmol/L. Levels of 30–300 mg/L (200–2000 µmol/L) are often observed in overdose patients. Postmortem blood levels have ranged from 50–400 mg/L in persons dying due to acute overdosage. Automated colorimetric techniques, gas chromatography and liquid chromatography are currently in use for the laboratory analysis of the drug in physiological specimens.
The diagnosis of minimal hepatic encephalopathy requires neuropsychological testing by definition. Older tests include the "numbers connecting test" A and B (measuring the speed at which one could connect randomly dispersed numbers 1–20), the "block design test" and the "digit-symbol test". In 2009 an expert panel concluded that neuropsychological test batteries aimed at measuring multiple domains of cognitive function are generally more reliable than single tests, and tend to be more strongly correlated with functional status. Both the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and PSE-Syndrom-Test may be used for this purpose. The PSE-Syndrom-Test, developed in Germany and validated in several other European countries, incorporates older assessment tools such as the number connection test.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
All patients with clinical or laboratory evidence of moderate to severe acute hepatitis should have an immediate measurement of prothrombin time and careful evaluation of mental status. If the prothrombin time is prolonged by ≈ 4–6 seconds or more (INR ≥ 1.5),
and there is any evidence of altered sensorium, the diagnosis of ALF should be strongly suspected, and hospital admission is mandatory. Initial laboratory examination must be extensive in order to evaluate both the etiology and severity.
- Initial laboratory analysis
- Prothrombin time/INR
- Complete blood count
- Chemistries
- Liver function test: AST, ALT, alkaline phosphatase, GGT, total bilirubin, albumin
- Creatinine, urea/blood urea nitrogen, sodium, potassium, chloride, bicarbonate, calcium, magnesium, phosphate
- Glucose
- Amylase and lipase
- Arterial blood gas, lactate
- Blood type and screen
- Paracetamol (acetaminophen) level, toxicology screen
- Viral hepatitis serologies: anti-HAV IgM, HBSAg, anti-HBc IgM, anti-HCV
- Autoimmune markers: ANA, ASMA, LKMA, immunoglobulin levels
- Ceruloplasmin level (when Wilson's disease suspected)
- Pregnancy test (females)
- Ammonia (arterial if possible)
- HIV status (has implication for transplantation)
History taking should include a careful review of possible exposures to viral infection and drugs or other toxins. From history and clinical examination, the possibility of underlying chronic disease should be ruled out as it may require different management.
A liver biopsy done via the transjugular route because of coagulopathy is not usually necessary, other than in occasional malignancies. As the evaluation continues, several important decisions have to be made; such as whether to admit the patient to an ICU, or whether to transfer the patient to a transplant facility. Consultation with the transplant center as early as possible is critical due to the possibility of rapid progression of ALF.
Acute liver failure is defined as "the rapid development of hepatocellular dysfunction, specifically coagulopathy and mental status changes (encephalopathy) in a patient without known prior liver disease".
The diagnosis of acute liver failure is based on physical exam, laboratory findings, patient history, and past medical history to establish mental status changes, coagulopathy, rapidity of onset, and absence of known prior liver disease respectively.
The exact definition of "rapid" is somewhat questionable, and different sub-divisions exist which are based on the time from onset of first hepatic symptoms to onset of encephalopathy. One scheme defines "acute hepatic failure" as the development of encephalopathy within 26 weeks of the onset of any hepatic symptoms. This is sub-divided into "fulminant hepatic failure", which requires onset of encephalopathy within 8 weeks, and "subfulminant", which describes onset of encephalopathy after 8 weeks but before 26 weeks. Another scheme defines "hyperacute" as onset within 7 days, "acute" as onset between 7 and 28 days, and "subacute" as onset between 28 days and 24 weeks.
A person's history of taking paracetamol is somewhat accurate for the diagnosis. The most effective way to diagnose poisoning is by obtaining a blood paracetamol level. A drug nomogram developed in 1975, called the Rumack-Matthew nomogram, estimates the risk of toxicity based on the serum concentration of paracetamol at a given number of hours after ingestion. To determine the risk of potential hepatotoxicity, the paracetamol level is traced along the nomogram. Use of a timed serum paracetamol level plotted on the nomogram appears to be the best marker indicating the potential for liver injury. A paracetamol level drawn in the first four hours after ingestion may underestimate the amount in the system because paracetamol may still be in the process of being absorbed from the gastrointestinal tract. Therefore, a serum level taken before 4 hours is not recommended.
Clinical or biochemical evidence of liver toxicity may develop in one to four days, although, in severe cases, it may be evident in 12 hours. Right-upper-quadrant tenderness may be present and can aid in diagnosis. Laboratory studies may show evidence of liver necrosis with elevated AST, ALT, bilirubin, and prolonged coagulation times, particularly an elevated prothrombin time. After paracetamol overdose, when AST and ALT exceed 1000 IU/L, paracetamol-induced hepatotoxicity can be diagnosed. In some cases, the AST and ALT levels can exceed 10,000 IU/L.
There are hospital protocols for prevention, supplementing with thiamine in the presence of: history of alcohol misuse or related seizures, requirement for IV glucose, signs of malnutrition, poor diet, recent diarrhea or vomiting, peripheral neuropathy, intercurrent illness, delirium tremens or treatment for DTs, and others. Some experts advise parenteral thiamine should be given to all at-risk patients in the emergency room.
In the clinical diagnosis should be remembered that early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. There is consensus to provide water-soluble vitamins and minerals after gastric operations.
In some countries certain foods have been supplemented with thiamine, and have reduced WE cases. Improvement is difficult to quantify because they applied several different actions. Avoiding alcohol and having adequate nutrition reduces one of the main risk factors in developing Wernicke-Korsakoff syndrome.
Diagnostic methods for hypertensive encephalopathy include physical examination, blood pressure measurement, blood sampling, ECG, EEG, chest X-ray, urinalysis, arterial blood gas analysis, and imaging of the head (CAT scan and/or MRI). Since decreasing the blood pressure is essential, anti-hypertensive medication is administered without awaiting the results of the laboratory tests. Electroencephalographic examination detects the absence of alpha waves, signifying impaired consciousness. In people with visual disturbances, slow waves are detected in the occipital areas.
For newborn infants starved of oxygen during birth there is now evidence that hypothermia therapy for neonatal encephalopathy applied within 6 hours of cerebral hypoxia effectively improves survival and neurological outcome. In adults, however, the evidence is less convincing and the first goal of treatment is to restore oxygen to the brain. The method of restoration depends on the cause of the hypoxia. For mild-to-moderate cases of hypoxia, removal of the cause of hypoxia may be sufficient. Inhaled oxygen may also be provided. In severe cases treatment may also involve life support and damage control measures.
A deep coma will interfere with body's breathing reflexes even after the initial cause of hypoxia has been dealt with; mechanical ventilation may be required. Additionally, severe cerebral hypoxia causes an elevated heart rate, and in extreme cases the heart may tire and stop pumping. CPR, defibrilation, epinephrine, and atropine may all be tried in an effort to get the heart to resume pumping. Severe cerebral hypoxia can also cause seizures, which put the patient at risk of self-injury, and various anti-convulsant drugs may need to be administered before treatment.
There has long been a debate over whether newborn infants with cerebral hypoxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Brain damage can occur both during and after oxygen deprivation. During oxygen deprivation, cells die due to an increasing acidity in the brain tissue (acidosis). Additionally, during the period of oxygen deprivation, materials that can easily create free radicals build up. When oxygen enters the tissue these materials interact with oxygen to create high levels of oxidants. Oxidants interfere with the normal brain chemistry and cause further damage (this is known as "reperfusion injury").
Techniques for preventing damage to brain cells are an area of ongoing research. Hypothermia therapy for neonatal encephalopathy is the only evidence-supported therapy, but antioxidant drugs, control of blood glucose levels, and hemodilution (thinning of the blood) coupled with drug-induced hypertension are some treatment techniques currently under investigation. Hyperbaric oxygen therapy is being evaluated with the reduction in total and myocardial creatine phosphokinase levels showing a possible reduction in the overall systemic inflammatory process.
In severe cases it is extremely important to act quickly. Brain cells are very sensitive to reduced oxygen levels. Once deprived of oxygen they will begin to die off within five minutes.
Diagnosis of Wernicke's encephalopathy or disease is made clinically. Caine et al. in 1997 established criteria that Wernicke's encephalopathy can be diagnosed in any patient with just two or more of the main symptoms noted above. The sensitivity of the diagnosis by the classic triad was 23% but increased to 85% taking two or more of the four classic features. This criteria is challenged because all the cases he studied were alcoholics.
Some consider it sufficient to suspect the presence of the disease with only one of the principal symptoms. Some British hospital protocols suspect WE with any one of these symptoms: confusion, decreased consciousness level (or unconsciousness, stupor or coma), memory loss, ataxia or unsteadiness, ophthalmoplegia or nystagmus, and unexplained hypotension with hypothermia. The presence of only one sign should be sufficient for treatment.
As a much more diverse range of symptoms has been found frequently in patients it is necessary to search for new diagnostic criteria, however Wernicke's encephalopathy remains a clinically-diagnosed condition. Neither the MR, nor serum measurements related to thiamine are sufficient diagnostic markers in all cases. Non-recovery upon supplementation with thiamine is inconclusive.
The sensitivity of MR was 53% and the specificity was 93%. The reversible cytotoxic edema was considered the most characteristic lesion of WE. The location of the lesions were more frequently atypical among non-alcoholics, while typical contrast enhancement in the thalamus and the mammillary bodies was observed frequently associated with alcohol abuse. These abnormalities may include:
- Medial thalami, periaqueductal gray matter, mamillary bodies, and brainstem nuclei edema (Zuccoli G.). Involvement is always bilateral symmetrical. Value of DWI in the diagnosis of WE is minimal. Axial FLAIR MRI images represent the best diagnostic MRI sequence. Contrast material may highlight involvement of the mamillary bodies.
There appears to be very little value for CT scans.
Thiamine can be measured using an erythrocyte transketolase activity assay, or by activation by measurement of in vitro thiamine diphosphate levels. Normal thiamine levels do not necessarily rule out the presence of WE, as this may be a patient with difficulties in intracellular transport.
To minimise the risk of this condition developing from its most common cause, overly rapid reversal of hyponatremia, the hyponatremia should be corrected at a rate not exceeding 10 mmol/L/24 h or 0.5 mEq/L/h; or 18 m/Eq/L/48hrs; thus avoiding demyelination. No large clinical trials have been performed to examine the efficacy of therapeutic re-lowering of serum sodium, or other interventions sometimes advocated such as steroids or plasma exchange.
Alcoholic patients should receive vitamin supplementation and a formal evaluation of their nutritional status.
Once osmotic demyelination has begun, there is no cure or specific treatment. Care is mainly supportive. Alcoholics are usually given vitamins to correct for other deficiencies. The favourable factors contributing to the good outcome in CPM without hyponatremia were: concurrent treatment of all electrolyte disturbances, early Intensive Care Unit involvement at the advent of respiratory complications, early introduction of feeding including thiamine supplements with close monitoring of the electrolyte changes and input.
Research has led to improved outcomes. Animal studies suggest that inositol reduces the severity of osmotic demyelination syndrome if given before attempting to correct chronic hyponatraemia. Further study is required before using inositol in humans for this purpose.
The most characteristic feature are elevated levels of gamma glutamyl transferase (100–300 IU/L), aspartate transaminase (>1000 IU/L) and sorbitol dehydrogenase, with AST levels > 4000 IU/L indicating a poor prognosis. High levels of unconjugated and total bilirubin, and serum bile acids, can be seen. Moderate to severe acidosis, leukocytosis, polycythaemia, increased creatine kinase and hyperammonemia may be present, and hemolysis can occur at the end stage. The prothrombin time (PT) and partial thromboplastin time (PTT) is often prolonged. Subclinical horses may only show elevated liver enzymes without any other clinical signs. Horses are rarely hypoglycemic, but blood glucose monitoring is ideal to indicate which horses may be benefited by glucose treatment.
At present this can only be made definitively by liver biopsy or post mortem examination. Given the isolation of a causative virus it should soon be possible to diagnose this by serology, polymerase chain reaction or viral culture. On necropsy, the liver will be small, flaccid, and "dish-rag" in appearance. It has a mottled and bile stained surface. On microscopy there is marked centrilobular to midzonal hepatocellular necrosis and a mild to moderate mononuclear infiltrate. Mild to moderate bile duct proliferation may also be present. On radiology, the liver may be shrunken and difficult to visualize on ultrasound. Ascites may be present.
Due to its non-specific nature, diagnosing CSE requires a multidisciplinary "Solvent Team" typically consisting of a neurologist, occupational physician, occupational hygienist, neuropsychologist, and sometimes a psychiatrist or toxicologist. Together, the team of specialists together assesses the patient's history of exposure, symptoms, and course of symptom development relative to the amount and duration of exposure, presence of neurological signs, and any existing neuropsychological impairment.
Furthermore, CSE must be diagnosed "by exclusion". This means that all other possible causes of the patient’s symptoms must first be ruled out beforehand. Because screening and assessing for CSE is a complex and time-consuming procedure requiring several specialists of multiple fields, few cases of CSE are formally diagnosed in the medical field. This may, in part, be a reason for the syndrome’s lack of recognition. The solvents responsible for neurological effects dissipate quickly after an exposure, leaving only indirect evidence of their presence, in the form of temporary or permanent impairments.
Brain imaging techniques that have been explored in research have shown little promise as alternative methods to diagnose CSE. Neuroradiology and functional imaging have shown mild cortical atrophy, and effects in dopamine-mediated frontostriatal circuits in some cases. Examinations of regional cerebral blood flow in some imaging techniques have also shown some cerebrovascular abnormalities in patients with CSE, but the data were not different enough from healthy patients to be considered significant. The most promising brain imaging technique being studied currently is functional magnetic resonance imaging (fMRI) but as of now, no specific brain imaging techniques are available to reliably diagnose CSE.
Introduced by a working group from the World Health Organization (WHO) in 1985, WHO diagnostic criteria states that CSE can occur in three stages, organic affective syndrome (type I), mild chronic toxic encephalopathy (type II), and severe chronic toxic encephalopathy (type III). Shortly after, a workshop in Raleigh-Durham, NC (United States) released a second diagnostic criterion which recognizes four stages as symptoms only (type 1), sustained personality or mood swings (type 2A), impairment of intellectual function (type 2B), and dementia (type 3). Though not identical, the WHO and Raleigh criteria are relatively comparable. WHO type I and Raleigh types 1 and 2A are believed to encompass the same stages of CSE, and WHO type II and Raleigh type 2B both involve deficiencies in memory and attention. No other international classifications for CSE have been proposed, and neither the WHO nor Raleigh criteria have been uniformly accepted for epidemiological studies.
Predicts mortality risk in pancreatitis with fewer variables than Ranson's criteria. Data should be taken from the first 24 hours of the patient's evaluation.
- BUN >25 mg/dL (8.9 mmol/L)
- Abnormal mental status with a Glasgow coma score <15
- Evidence of SIRS (systemic inflammatory response syndrome)
- Patient age >60 years old
- Imaging study reveals pleural effusion
Patients with a score of zero had a mortality of less than one percent, whereas patients with a score of five had a mortality rate of 22 percent. In the validation cohort, the BISAP score had similar test performance characteristics for predicting mortality as the APACHE II score. As is a problem with many of the other scoring systems, the BISAP has not been validated for predicting outcomes such as length of hospital stay, need for ICU care, or need for intervention.
Cord blood gas analysis can be used to determine if there is perinatal hypoxia/asphyxia, which are potential causes of hypoxic-ischemic encephalopathy or cerebral palsy, and give insight into causes of intrapartum fetal distress. Cord blood gas analysis is indicated for high-risk pregnancies, in cases where C-sections occurred due to fetal compromise, if there were abnormal fetal heart rate patterns, Apgar scores of 3 or lower, intrapartum fever, or multifetal gestation.
Evidence of brain injury related to the hypoxic-ischemic events that cause neonatal encephalopathy can be seen with brain MRIs, CTs, magnetic resonance spectroscopy imaging or ultrasounds.
Neonatal encephalopathy may be assessed using Sarnat staging.
Diagnosis is typically made based on a history of significant radiation exposure and suitable clinical findings. An absolute lymphocyte count can give a rough estimate of radiation exposure. Time from exposure to vomiting can also give estimates of exposure levels if they are less than 1000 rad.
In predicting the prognosis, there are several scoring indices that have been used as predictors of survival. Two such scoring systems are the Ranson criteria and APACHE II (Acute Physiology and Chronic Health Evaluation) indices. Most, but not all studies report that the Apache score may be more accurate. In the negative study of the APACHE-II, the APACHE-II 24-hour score was used rather than the 48-hour score. In addition, all patients in the study received an ultrasound twice which may have influenced allocation of co-interventions. Regardless, only the APACHE-II can be fully calculated upon admission. As the APACHE-II is more cumbersome to calculate, presumably patients whose only laboratory abnormality is an elevated lipase or amylase do not need assessment with the APACHE-II; however, this approach is not studied. The APACHE-II score can be calculated at www.sfar.org.
Practice guidelines state: