Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
Diagnosis is made when several characteristic clinical signs are observed. There is no single test to confirm the presence of Weill–Marchesani syndrome. Exploring family history or examining other family members may prove helpful in confirming this diagnosis.
Nystagmus is very noticeable but rarely recognized. Nystagmus can be clinically investigated by using a number of non-invasive standard tests. The simplest one is the caloric reflex test, in which one ear canal is irrigated with warm or cold water or air. The temperature gradient provokes the stimulation of the horizontal semicircular canal and the consequent nystagmus.
Nystagmus is often very commonly present with Chiari malformation.
The resulting movement of the eyes may be recorded and quantified by special devices called electronystagmograph (ENG), a form of electrooculography (an electrical method of measuring eye movements using external electrodes), or even less invasive devices called videonystagmograph (VNG), a form of video-oculography (VOG) (a video-based method of measuring eye movements using external small cameras built into head masks) by an audiologist. Special swinging chairs with electrical controls can be used to induce rotatory nystagmus.
Over the past forty years, objective eye-movement-recording techniques have been applied to the study of nystagmus, and the results have led to a greater accuracy and understanding of the condition.
Orthoptists may also use an optokinetic drum, or electrooculography to assess a patient's eye movements.
Nystagmus can be caused by subsequent foveation of moving objects, pathology, sustained rotation or substance use. Nystagmus is not to be confused with other superficially similar-appearing disorders of eye movements (saccadic oscillations) such as opsoclonus or ocular flutter that are composed purely of fast-phase (saccadic) eye movements, while nystagmus is characterised by the combination of a smooth pursuit, which usually acts to take the eye off the point of regard, interspersed with the saccadic movement that serves to bring the eye back on target. Without the use of objective recording techniques, it may be very difficult to distinguish between these conditions.
In medicine, the presence of nystagmus can be benign, or it can indicate an underlying visual or neurological problem.
Three tests are useful in confirming the presence and severity of Horner syndrome:
- Cocaine drop test: Cocaine eyedrops block the reuptake of post-ganglionic norepinephrine resulting in the dilation of a normal pupil from retention of norepinephrine in the synapse. However, in Horner's syndrome the lack of norepinephrine in the synaptic cleft causes mydriatic failure. A more recently introduced approach that is more dependable and obviates the difficulties in obtaining cocaine is to apply the alpha-agonist apraclonidine to both eyes and observe the increased mydriatic effect (due to hypersensitivity) on the affected side of Horner syndrome (the opposite effect to what the cocaine test would produce in the presence of Horner's).
- Paredrine test: This test helps to localize the cause of the miosis. If the third order neuron (the last of three neurons in the pathway which ultimately discharges norepinephrine into the synaptic cleft) is intact, then the amphetamine causes neurotransmitter vesicle release, thus releasing norepinephrine into the synaptic cleft and resulting in robust mydriasis of the affected pupil. If the lesion itself is of the third order neuron, then the amphetamine will have no effect and the pupil remains constricted. There is no pharmacological test to differentiate between a first and second order neuron lesion.
- Dilation lag test
It is important to distinguish the ptosis caused by Horner's syndrome from the ptosis caused by a lesion to the oculomotor nerve. In the former, the ptosis occurs with a constricted pupil (due to a loss of sympathetics to the eye), whereas in the latter, the ptosis occurs with a dilated pupil (due to a loss of innervation to the sphincter pupillae). In a clinical setting, these two ptoses are fairly easy to distinguish. In addition to the blown pupil in a CNIII (oculomotor nerve) lesion, this ptosis is much more severe, occasionally occluding the whole eye. The ptosis of Horner syndrome can be quite mild or barely noticeable (partial ptosis).
When anisocoria occurs and the examiner is unsure whether the abnormal pupil is the constricted or dilated one, if a one-sided ptosis is present then the abnormally sized pupil can be presumed to be on the side of the ptosis.
Causes a ‘white reflex’ in the affected eye (leukocoria), prompting further investigation.
On photographs taken using a flash, instead of the familiar red-eye effect, leukocoria can cause a bright white reflection in an affected eye. Leukocoria may appear also in low indirect light, similar to eyeshine.
Leukocoria can be detected by a routine eye exam (see Ophthalmoscopy). For screening purposes, the red reflex test is used. In this test, when a light is shone briefly through the pupil, an orange red reflection is normal. A white reflection is leukocoria.
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Eye surgery has been documented to help those with ocular diseases, such as some forms of glaucoma.
However, long term medical management of glaucoma has not proven to be successful for patients with Weill–Marchesani syndrome. Physical therapy and orthopedic treatments are generally prescribed for problems stemming from mobility from this connective tissue disorder. However, this disorder has no cure, and generally, treatments are given to improve quality of life.
Imaging studies are performed before surgery or biopsy to preclude an intracranial connection. Images usually show a sharply circumscribed but expansile mass. It may be difficult to exclude the intracranial connection if the defect is small whether employing computed tomography or magnetic resonnance.
The most common missed lesion is within the nasal cavity, where a fibrosed nasal polyp may be considered. However, it does not have glial tissue. Further, a polyp usually has mucoserous glands. The lesion is frequently misintrepreted as scar in the subcutaneous tissues, but scar in a <2 year old child would be uncommon. Special stains are frequently required to highlight the diagnosis.
Crossed dystopia (syn.unilateral fusion cross fused renal ectopia) is a rare form of renal ectopia where both kidneys are on the same side of the spine. In many cases, the two kidneys are fused together, yet retain their own vessels and ureters. The ureter of the lower kidney crosses the midline to enter the bladder on the contralateral side. Both renal pelvis can lie one above each other medial to the renal parenchyma (unilateral long kidney) or the pelvis of the crossed kidney faces laterally (unilateral "S" shaped kidney). Urogram is diagnostic.
The anomaly can be diagnosed through ultrasound of urography, but surgical intervention is only necessary if there are other complications, such as tumors or pyelonephritis.
Persistent tunica vasculosa lentis is a congenital ocular anomaly. It is a form of persistent hyperplastic primary vitreous (PHPV).
It is a developmental disorder of the vitreous. It is usually unilateral and first noticed in the neonatal period. It may be associated with micropthalmos, cataracts, and increased intraocular pressure. Elongated ciliary processes are visible through the dilated pupil. A USG B-scan confirms diagnosis in the presence of a cataract.
Treatment is based
on the stage of the disease. Stage 1 does not
require treatment and
should be observed. 4
Neovascularization
(stage 2) responds well
to laser ablation or
cryotherapy.2,4 Eyes
with retinal detachments (stages
3 through 5) require surgery, with
earlier stages requiring scleral
buckles and later stages ultimately
needing vitrectomy. 2,4
More recently, the efficacy of
anti-VEGF intravitreal injections
has been studied. In one study,
these injections, as an in adjunct
with laser, helped early stages
achieve stabilization, but further
investigation is needed.6
The most common causes in young children are birth trauma and a type of cancer called neuroblastoma. The cause of about a third of cases in children is unknown.
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Lens subluxation is also seen in dogs and is characterized by a partial displacement of the lens. It can be recognized by trembling of the iris (iridodonesis) or lens (phacodonesis) and the presence of an aphakic crescent (an area of the pupil where the lens is absent). Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration, prolapse of the vitreous into the anterior chamber, and an increase or decrease of anterior chamber depth. Removal of the lens before it completely luxates into the anterior chamber may prevent secondary glaucoma. A nonsurgical alternative involves the use of a miotic to constrict the pupil and prevent the lens from luxating into the anterior chamber.
Corectopia is the displacement of the eye's pupil from its normal, central position. It may be associated with high myopia or ectopia lentis, among other conditions. Medical or surgical intervention may be indicated for the treatment of corectopia in some cases.
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
It is suggested that the diagnostic criteria for Malpuech syndrome should include cleft lip and/or palate, typical associated facial features, and at least two of the following: urogenital anomalies, caudal appendage, and growth or developmental delay.
Due to the relatively high rate of hearing impairment found with the disorder, it too may be considered in the diagnosis. Another congenital disorder, Wolf-Hirschhorn (Pitt-Rogers-Danks) syndrome, shares Malpuech features in its diagnostic criteria. Because of this lacking differentiation, karyotyping (microscopic analysis of the chromosomes of an individual) can be employed to distinguish the two. Whereas deletions in the short arm of chromosome 4 would be revealed with Wolf-Hirschhorn, a karyotype without this aberration present would favor a Malpuech syndrome diagnosis. Also, the karyotype of an individual with Malpuech syndrome alone will be normal.
A mydriatic is an agent that induces dilation of the pupil. Drugs such as tropicamide are used in medicine to permit examination of the retina and other deep structures of the eye, and also to reduce painful ciliary muscle spasm (see cycloplegia). Phenylephrine (e.g. Cyclomydril) is used if strong mydriasis is needed for a surgical intervention. One effect of administration of a mydriatic is intolerance to bright light (photophobia). Purposefully-induced mydriasis via mydriatics is also used as a diagnostic test for Horner's syndrome.
The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy.
Koenig and Spranger (1986) noted that eye lesions are apparently nonobligatory components of the syndrome. The diagnosis of Fraser syndrome should be entertained in patients with a combination of acrofacial and urogenital malformations with or without cryptophthalmos. Thomas et al. (1986) also emphasized the occurrence of the cryptophthalmos syndrome without cryptophthalmos and proposed diagnostic criteria for Fraser syndrome. Major criteria consisted of cryptophthalmos, syndactyly, abnormal genitalia, and positive family history. Minor criteria were congenital malformation of the nose, ears, or larynx, cleft lip and/or palate, skeletal defects, umbilical hernia, renal agenesis, and mental retardation. Diagnosis was based on the presence of at least 2 major and 1 minor criteria, or 1 major and 4 minor criteria.
Boyd et al. (1988) suggested that prenatal diagnosis by ultrasound examination of eyes, digits, and kidneys should detect the severe form of the syndrome. Serville et al. (1989) demonstrated the feasibility of ultrasonographic diagnosis of the Fraser syndrome at 18 weeks' gestation. They suggested that the diagnosis could be made if 2 of the following signs are present: obstructive uropathy, microphthalmia, syndactyly, and oligohydramnios. Schauer et al. (1990) made the diagnosis at 18.5 weeks' gestation on the basis of sonography. Both the female fetus and the phenotypically normal father had a chromosome anomaly: inv(9)(p11q21). An earlier born infant had Fraser syndrome and the same chromosome 9 inversion.
Van Haelst et al. (2007) provided a revision of the diagnostic criteria for Fraser syndrome according to Thomas et al. (1986) through the addition of airway tract and urinary tract anomalies to the major criteria and removal of mental retardation and clefting as criteria. Major criteria included syndactyly, cryptophthalmos spectrum, urinary tract abnormalities, ambiguous genitalia, laryngeal and tracheal anomalies, and positive family history. Minor criteria included anorectal defects, dysplastic ears, skull ossification defects, umbilical abnormalities, and nasal anomalies. Cleft lip and/or palate, cardiac malformations, musculoskeletal anomalies, and mental retardation were considered uncommon. Van Haelst et al. (2007) suggested that the diagnosis of Fraser syndrome can be made if either 3 major criteria, or 2 major and 2 minor criteria, or 1 major and 3 minor criteria are present in a patient.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
Diagnosis is made through a combination of patient history, neurological examination, and medical imaging. Magnetic resonance imaging (MRI) is considered the best imaging modality for Chiari malformation since it visualizes neural tissue such as the cerebellar tonsils and spinal cord as well as bone and other soft tissues. CT and CT myelography are other options and were used prior to the advent of MRI, but they characterize syringomyelia and other neural abnormalities less well.
By convention the cerebellar tonsil position is measured relative to the basion-opisthion line, using sagittal T1 MRI images or sagittal CT images. The selected cutoff distance for abnormal tonsil position is somewhat arbitrary since not everyone will be symptomatic at a certain amount of tonsil displacement, and the probability of symptoms and syrinx increases with greater displacement, however greater than 5 mm is the most frequently cited cutoff number, though some consider 3–5 mm to be "borderline," and symptoms and syrinx may occur above that. One study showed little difference in cerebellar tonsil position between standard recumbent MRI and upright MRI for patients without a history of whiplash injury. Neuroradiological investigation is used to first rule out any intracranial condition that could be responsible for tonsillar herniation. Neuroradiological diagnostics evaluate the severity of crowding of the neural structures within the posterior cranial fossa and their impact on the foramen magnum. Chiari 1.5 is a term used when both brainstem and tonsillar herniation through the foramen magnum are present.
The diagnosis of a Chiari II malformation can be made prenatally through ultrasound.
Photophobia may also affect patients' socioeconomic status by limiting their career choices, since many workplaces require bright lights for safety or to accommodate the work being done. Sufferers may be shut out of a wide range of both skilled and unskilled jobs, such as in warehouses, offices, workshops, classrooms, supermarkets and storage spaces. Some photophobes are only able to work night shifts, which reduces their prospects for finding work.