Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with ED often have certain cranial-facial features which can be distinctive: frontal bossing is common, longer or more pronounced chins are frequent, broader noses are also very common. In some types of ED, abnormal development of parts of the eye can result in dryness of the eye, cataracts, and vision defects. Professional eye care can help minimize the effects of ED on vision. Similarly, abnormalities in the development of the ear may cause hearing problems. Respiratory infections can be more common because the normal protective secretions of the mouth and nose are not present. Precautions must be taken to limit infections.
Some tests which detect cancer could be called "screening for epithelial dysplasia". The principle behind these tests is that physicians expect dysplasia to occur at the same rate in a typical individual as it would in many other people. Because of this, researchers design screening recommendations which assume that if a physician can find no dysplasia at certain time, then doing testing before waiting until new dysplasia could potentially develop would be a waste of medical resources for the patient and the healthcare provider because the chances of detecting anything is extremely low.
Some examples of this in practice are that if a patient whose endoscopy did not detect dysplasia on biopsy during screening for Barrett's esophagus, then research shows that there is little chance of any test detecting dysplasia for that patient within three years.
Individuals at average-risk for colorectal cancer should have another screening after ten years if they get a normal result and after five years if they have only one or two adenomatous polyps removed.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
The development of tooth buds frequently results in congenitally absent teeth (in many cases a lack of a permanent set) and/or in the growth of teeth that are peg-shaped or pointed. The enamel may also be defective. Cosmetic dental treatment is almost always necessary and children may need dentures as early as two years of age. Multiple denture replacements are often needed as the child grows, and dental implants may be an option in adolescence, once the jaw is fully grown. Nowadays the option of extracting the teeth and substituting them with dental implants is quite common. In other cases, teeth can be crowned. Orthodontic treatment also may be necessary. Because dental treatment is complex, a multi-disciplinary approach is best.
In the 1960s and 1970s, several studies were conducted sponsored by the U.S. Atomic Energy Commission, with the aim of finding a link between genetics and hypodontia.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
There are at least four types of FFDD:
- Type I: autosomal dominant FFDD
- Type II: autosomal recessive FFDD
- Type III: FFDD with other facial features
- Type IV: facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. Autosomal recessive.
HED2 is suspected after infancy on the basis of physical features in most affected individuals. GJB6 is the only gene known to be associated with HED2. Targeted mutation analysis for the four most common GJB6 mutations is available on a clinical basis and detects mutations in approximately 100% of affected individuals. Sequence analysis is also available on a clinical basis for those in whom none of the four known mutations is identified.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
There is no treatment necessary for any type of COD. Diagnosis is important so that the treating doctor does not confuse it for another periapical disease such as rarefying osteitis or condensing osteitis. Incorrect diagnosis could lead to unnecessary root canal treatments. It can be diagnosed by radiographic appearance. Confirming the tooth is vital, as is noting the demographic (African American females).
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
Focal facial dermal dysplasia (FFDD) is a rare genetically heterogeneous group of disorders that are characterized by congenital bilateral scar like facial lesions, with or without associated facial anomalies. It is characterized by hairless lesions with fingerprint like puckering of the skin, especially at the temples, due to alternating bands of dermal and epidermal atrophy.
This condition is also known as Brauer syndrome (hereditary symmetrical aplastic nevi of temples, bitemporal aplasia cutis congenita, bitemporal aplasia cutis congenita: OMIM ) and Setleis syndrome (facial ectodermal dysplasia: OMIM ).
Females are affected more than males, and the condition occurs in permanent (adult) teeth more than deciduous (baby teeth or milk teeth).
The oral rehabilitation of hypodontia, especially where a significant number of teeth have not developed, is often a multidisciplinary process, involving a specialist orthodontist, a consultant in restorative dentistry, and a paediatric dentist in the earlier years. The process of treating and managing hypodontia begins in the early years of the patient's dentition where absent teeth are identified and the process of maintaining the remaining teeth begins. This is largely conducted by the paediatric dentist with orthodontic input. Once all the adult teeth have erupted the orthodontist is likely to liaise with the restorative dentist regarding optimal positioning of teeth for subsequent replacement with prosthodontic methods. This may include the utilisation of a resin-retained bridge and implants for spaces or composite resin, veneers or crowns where teeth are diminutive or misshaped.
Unerupted microdonts may require surgical removal to prevent the formation of cysts. Erupted microdonts, peg laterals especially, may cause cosmetic concern. Such teeth may be restored to resemble normal sized teeth, typically with composite build ups or crowns. Orthodontics may be required in severe cases to close gaps between the teeth.
Diagnosis is mostly based on general examination and radiographs, and it should be taken when abnormality of the teeth is suspected as most of the affected teeth have normal clinical appearance.
Differential diagnosis is very important to have a definitive diagnosis as some radiographic or histologic features of dentine dysplasia may bear a resemblance to different disorders:
- Dentinogenesis Imperfecta
- Odontodysplasia
- Calcinosis
- Osteogenesis imperfecta
- Ehlers Danlos syndrome
- Goldblatt syndrome
- Schimke immuno-osseous dysplasia
- Brachio-skeleto-genital syndrome.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
Pure hair-nail type ectodermal dysplasia is a genetic mutation in the "hair matrix and cuticle keratin KRTHB5 gene" that causes ectodermal dysplasia of hair and nail type. Manifestations of this disorder include onychodystrophy and severe hypotrichosis. It represents as an autosomal dominant trait.
Anomalies of the hair shaft caused by ectodermal dysplasia should be ruled out. Mutations in the CDH3 gene can also appear in EEM syndrome.
Examples of dysplasia include epithelial dysplasia of the cervix (cervical intraepithelial neoplasia – a disorder commonly detected by an abnormal pap smear) consisting of an increased population of immature (basal-like) cells which are restricted to the mucosal surface, and have not invaded through the basement membrane to the deeper soft tissues. Analogous conditions include vaginal intraepithelial neoplasia and vulvar intraepithelial neoplasia. Metanephric dysplastic hematoma of the sacral region is a dysplastic overgrowth observed in infants.
Early intervention is considered important. For infants, breathing and feeding difficulties, are monitored. Therapies used are "symptomatic and supportive."
Focal dermal hypoplasia has been associated with PORCN gene mutations on the X chromosome. 90% of the individuals who are affected with the syndrome are female: the commonly accepted, though unconfirmed, explanation for this is that the non-mosaic hemizygous males are not viable.
The differential diagnosis of focal dermal hypoplasia (Goltz) syndrome includes autosomal recessive Setleis syndrome due to TWIST2 gene mutations. It associated with morning glory anomaly, polymicrogyria, incontinentia pigmenti, oculocerebrocutaneous syndrome, Rothmund-Thomson syndrome and microphthalmia with linear skin defects (also known as MLS) syndrome because they are all caused by deletions or point mutations in the HCCS gene.