Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause. Diagnosis is generally achieved by signs such as cranial bruits and symptoms such as expanded facial veins. The vein of Galen can be visualized using ultrasound or Doppler. A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.
Cerebral angiography is the diagnostic standard. MRIs are usually normal.
The Cognard et al. Classification correlates venous drainage patterns with increasingly aggressive neurological clinical course.
Nutcracker syndrome can be diagnosed with:
- Left renal venography—considered to be the gold standard test.
- Computed tomography (CT).
- Abdominal ultrasonography—not definitive but has been found to be useful.
Management of the underlying defect is proportional to the severity of the clinical presentation. Leg swelling and pain is best evaluated by vascular specialists (vascular surgeons, interventional cardiologists, interventional radiologists) who both diagnose and treat arterial and venous diseases to ensure that the cause of the extremity pain is evaluated. The diagnosis needs to be confirmed with some sort of imaging that may include magnetic resonance venography, venogram and usually confirmed with intravascular ultrasound because the flattened vein may not be noticed on conventional venography. In order to prevent prolonged swelling or pain from the consequences of the backed up blood from the compressed iliac vein, flow needs to be improved out of the leg. Uncomplicated cases may be managed with compression stockings.
Severe May-Thurner syndrome may require thrombolysis if there is a recent onset of thrombosis, followed by angioplasty and stenting of the iliac vein after confirming the diagnosis with a venogram or an intravascular ultrasound. A stent may be used to support the area from further compression following angioplasty. As the name implies, there classically is not a thrombotic component in these cases, but thrombosis may occur at any time.
If the patient has extensive thrombosis, it may be appropriate to consider pharmacologic and/or mechanical (also known as pharmacomechanical) thrombectomy. This is currently being studied to determine whether this will decrease the incidence of post-thrombotic syndrome.
Treatment depends on the severity and symptoms. Treatments include:
- Endovascular stenting.
- Renal vein re-implantation.
- Gonadal vein embolization.
Symptoms of congenital PSS usually appear by six months of age and include failure to gain weight, vomiting, and signs of hepatic encephalopathy (a condition where toxins normally removed by the liver accumulate in the blood and impair the function of brain cells) such as seizures, depression, tremors, drooling, and head pressing. Urate bladder stones may form because of increased amounts of uric acid in circulation and excreted by the kidneys. Initial diagnosis of PSS is through laboratory bloodwork showing either elevated serum bile acids after eating or elevation of fasting blood ammonia levels, which has been shown to have a higher sensitivity and specificity than the bile acids test.
Various diagnostic imaging techniques are used to demonstrate PSS. Ultrasonography is a rapid, convenient, non-invasive, and accurate method for diagnosis of PSS. Ultrasonographic diagnosis of congenital PSS depends on finding an anomalous vessel either in the liver or just caudal to the liver in the dorsal abdomen, usually draining into the caudal vena cava. Ultrasonography can also be used to estimate hepatic volume and vascularity, and to identify related lesions affecting other abdominal structures, such as urinary calculi. Computed tomography (CT) may be considered when ultrasound expertise is lacking or ultrasonography is considered sub-optimal (e.g. because of the conformation of the patient). Control of respiration and careful timing of CT acquisition after contrast injection is necessary for optimal depiction of PSS. Rectal portal scintigraphy using technetium pertechnetate, a technique of imaging involving detection of gamma rays emitted by radionuclides absorbed through the rectum and into the bloodstream, demonstrates the blood vessel bypassing the liver. In certain institutions, scintigraphy is the preferred diagnostic technique, but this leaves the patient radioactive for 24h, which may be inconvenient depending on nursing needs. Portal venography is the definitive method for demonstrating PSS, but is invasive, hence it is best reserved for animals with a known shunt or those considered highly likely to have a shunt that was not detectable by ultrasonography.
A cirsoid aneurysm is the dilation of a group of blood vessels due to congenital malformations with AV (arterio venous) shunting. Cirsoid means resembling a varix.
Sometimes, a minor traumatic episode, such as a fall or bump on the head, can lead to the formation of a cirsoid aneurysm. Often these are trivial traumatic episodes
Cirsoid aneurysm, in general, is a hemangioma of an artery. It most commonly occurs over the head, usually the superficial temporal artery and also its branches. It can also occur in places where medium vessels lie over bones without much intervening tissues between them and the skin.
The superficial temporal artery is the most commonly involved artery.
DVA can be diagnosed through the Cerebral venous sinus thrombosis with collateral drainage. DVA can also be found diagnosed with Sturge–Weber syndrome and can be found through leptomeningeal angiomatosis. Demyelinating disease has also been found to enlarge Medulla veins.
Occasionally, there is only the one single umbilical artery (SUA) present in the umbilical cord. Approximately this affects between 1 in 100 and 1 in 500 pregnancies, making it the most common umbilical abnormality. It is more common in multiple births. Its cause is not known.
Most cords have one vein and two arteries. The vein carries oxygenated blood from the placenta to the baby and the arteries carry deoxygenated blood from the baby to the placenta. In approximately 1% of pregnancies there are only two vessels —usually a single vein and single artery. In about 75% of those cases, the baby is entirely normal and healthy and the missing artery isn't missed at all. One artery can support a pregnancy and does not necessarily indicate problems. For the other 25%, a 2-vessel cord is a sign that the baby has other abnormalities—sometimes life-threatening and sometimes not. SUA does increase the risk of the baby having cardiac, skeletal, intestinal or renal problems. Babies with SUA may have a higher likelihood of having other congenital abnormalities, especially of the heart. However, additional testing (high level ultrasound scans) can rule out many of these abnormalities prior to birth and alleviate parental anxiety. Echocardiograms of the fetus may be advised to ensure the heart is functioning properly. Genetic counseling may be useful, too, especially when weighing the pros and cons of more invasive procedures such as chorionic villus sampling and amniocentesis.
Although the presence of an SUA is a risk factor for additional complications, most fetuses with the condition will not experience other problems, either in utero or after birth. Especially encouraging are cases in which no other soft markers for congenital abnormalities are visible via ultrasound. Prior to ultrasound technology, the only method for determining the presence of a SUA was at birth, following an examination of the placenta. Given that the vast majority of expectant mothers do not receive the kind of advanced ultrasound scanning required to confirm SUA in utero, most cases may never be detected antenatally even today.
Doctors and midwives often suggest parents take the added precaution of having regular growth scans near term to rule out intrauterine growth restriction, which can happen on occasion and warrant intervention. Yet the majority of growth restricted infants with the abnormality also have other defects. Finally, neonates with the finding may also have a higher occurrence of renal problems, therefore close examination of the infant may be warranted shortly after birth. Among SUA infants, there is a slightly elevated risk for post-natal urinary infections.
It may be associated with Edwards syndrome.
Since it is a rare disease, it remains a diagnosis of exclusion of other conditions with similar symptoms. The diagnosis is supported by the results of imaging studies such as computed tomography or magnetic resonance imaging, ultrasound of the abdomen (with or without doppler imaging) or intravenous urography.
Specialist vascular ultrasonographers should routinely look for left ovarian vein reflux in patients with lower limb varices especially if not associated with long or short saphenous reflux. The clinical pattern of varices differs between the two types of lower limb varices.
CT scanning is used to exclude abdominal or pelvic pathology. CT-Angiography/Venography can often demonstrate left ovarian vein reflux and image an enlarged left ovarian vein but is less sensitive and much more expensive than duplex Doppler ultrasound examination. Ultrasound requires that the ultrasonographer be experienced in venous vascular ultrasound and so is not always readily available. A second specialist ultrasound exam remains preferable to a CT scan.
As a wide range of pelvic and abdominal pathology can cause symptoms consistent with those symptoms due to left ovarian vein reflux, prior to embolisation of the left ovarian vein, a careful search for such diagnoses is essential. Consultation with general surgeons, gynaecologists, and possibly CT scanning should always be considered.
Surgical treatment is best, when it can be performed. Pressure within the portal vein is measured as the shunt is closed, and it must be kept below 20 cm HO or else portal hypertension will ensue. Methods of shunt attenuation should aim to slowly occlude the vessel over several weeks to months in order to avoid complications associated with portal hypertension. These methods include ameroid ring constrictors, cellophane banding, intravascular or percutaneous silicone hydraulic occluders. The most common methods of attenuation used by veterinarians are ameroid ring constrictors and cellophane banding. Both methods have reportedly good outcomes in both cats and dogs, although the true composition of readily sourced cellophane has been found to be made from plastics (inert) and not cellulose (stimulates a fibrous reaction). Recently, a commercial supplier of regenerated cellulose based cellophane for veterinarians has been established for use of cellophane banding for portosystemic shunts in dogs and cats. Complete closure of extrahepatic shunts results in a very low recurrence rate, while incomplete closure results in a recurrence rate of about 50 percent. However, not all dogs with extrahepatic shunts tolerate complete closure (16 to 68 percent). Intrahepatic shunts are much more difficult to surgically correct than extrahepatic shunts due to their hidden nature, large vessel size, and greater tendency toward portal hypertension when completely closed. When surgery is not an option, PSS is treated as are other forms of liver failure. Dietary protein restriction is helpful to lessen signs of hepatic encephalopathy, and antibiotics such as neomycin or metronidazole and other medicines such as lactulose can reduce ammonia production and absorption in the intestines. The prognosis is guarded for any form of PSS.
History and examination by a physician with characteristic signs and symptoms are sufficient in many cases in ruling out systemic causes of venous hypertension such as hypervolemia and heart failure. An ultrasound (usually a lower limbs venous ultrasonography) can detect venous obstruction or valvular incompetence as the cause, and is used for planning venous ablation procedures, but it is not necessary in suspected venous insufficiency where surgical intervention is not indicated.
May-Thurner syndrome (MTS) is thought to represent between two and five percent of lower-extremity venous disorders. May-Thurner syndrome is often unrecognized; however, current estimates are that this condition is three times more common in women than in men. The classic syndrome typically presents in the second to fourth decades of life. In the 21st century in a broader disease profile, the syndrome acts as a permissive lesion and becomes symptomatic when something else happens such as, following trauma, a change in functional status such as swelling following orthopaedic joint replacement.
It is important to consider May-Thurner syndrome in patients who have no other obvious reason for hypercoagulability and who present with left lower extremity thrombosis. To rule out other causes for hypercoagulation, it may be appropriate to check the antithrombin, protein C, protein S, factor V Leiden, and prothrombin G20210A.
Venography will demonstrate the classical syndrome when causing deep venous thrombosis.
May-Thurner syndrome in the broader disease profile known as nonthrombotic iliac vein lesions (NIVLs) exists in the symptomatic ambulatory patient and these lesions are usually not seen by venography. Morphologically, intravascular ultrasound (IVUS) has emerged as the best current tool in the broader sense. Functional testing such as duplex ultrasound, venous and interstitial pressure measurement and plethysmography may sometimes be beneficial. Compression of the left common iliac vein may be seen on pelvic CT.
Just like berry aneurysm, an intracerebral arteriovenous fistula can rupture causing subarachnoid hemorrhage.
A developmental venous anomaly (DVA, formerly known as venous angioma) is a congenital variant of the cerebral venous drainage. On imaging it is seen as a number of small deep parenchymal veins converging toward a larger collecting vein.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
An arteriovenous fistula is an abnormal connection or passageway between an artery and a vein. It may be congenital, surgically created for hemodialysis treatments, or acquired due to pathologic process, such as trauma or erosion of an arterial aneurysm.
To discover the extent and severity of coronary artery ectasia there are a variety of diagnostic tools used. The most common method for discovering the disease is through angiography. Angiography is the procedure where a contrast dye is entered into the vessels and an x-ray is taken, which will allow the vessels to be seen on the x-ray. Using angiography clinicians are able to display the size, location and number of vessels affected by the disease. Is can also be analyzed through other methods such as intravascular ultrasound, and magnetic resonance imaging. Using these diagnostic methods, it has been discovered that the disease normally occurs most often in the right coronary artery, followed by the left anterior descending artery, and finally the left anterior circumflex artery. Using these methods Coronary artery ectasia can be divided into four different types: Type 1¬→diffuse ectasia in 2-3 different vessels, Type 2¬→ diffuse disease in 1 vessel and local disease in another, Type 3¬→ diffuse disease in one vessel and Type 4¬→ localized or segmental ectasia.
When Budd–Chiari syndrome is suspected, measurements are made of liver enzyme levels and other organ markers (creatinine, urea, electrolytes, LDH).
Budd–Chiari syndrome is most commonly diagnosed using ultrasound studies of the abdomen and retrograde angiography. Ultrasound may show obliteration of hepatic veins, thrombosis or stenosis, spiderweb vessels, large collateral vessels, or a hyperechoic cord replacing a normal vein. Computed tomography (CT) or magnetic resonance imaging (MRI) is sometimes employed although these methods are generally not as sensitive. Liver biopsy is nonspecific but sometimes necessary to differentiate between Budd–Chiari syndrome and other causes of hepatomegaly and ascites, such as galactosemia or Reye's syndrome.
Several studies have attempted to predict the survival of patients with Budd–Chiari syndrome. In general, nearly 2/3 of patients with Budd–Chiari are alive at 10 years. Important negative prognostic indicators include ascites, encephalopathy, elevated Child-Pugh scores, elevated prothrombin time, and altered serum levels of various substances (sodium, creatinine, albumin, and bilirubin). Survival is also highly dependent on the underlying cause of the Budd–Chiari syndrome. For example, a patient with an underlying myeloproliferative disorder may progress to acute leukemia, independently of Budd–Chiari syndrome.
GAVE is usually diagnosed definitively by means of an endoscopic biopsy. The tell-tale watermelon stripes show up during the endoscopy.
Surgical exploration of the abdomen may be needed to diagnose some cases, especially if the liver or other organs are involved.
Venous Insufficiency Conservative, Hemodynamic and Ambulatory treatment" is an ultrasound guided, minimally invasive surgery strategic for the treatment of varicose veins, performed under local anaesthetic. CHIVA is an abbreviation from the French "Cure Conservatrice et Hemodynamique de l'Insufficience Veineuse en Ambulatoire".
Pulmonary vein stenosis is a rare cardiovascular disorder. It is recognized as being the stenosis of one or more of the four pulmonary veins that return blood from the lungs to the left atrium of the heart. In congenital cases, it is associated with poor prognosis and high mortality rate. In some people, pulmonary vein stenosis occurs after pulmonary vein ablation for the treatment of atrial fibrillation. Some recent research has indicated that it may be genetically linked in congenital cases.