Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
Electrodiagnostic testing (also called electrophysiologic) includes nerve conduction studies which involves stimulating a peripheral motor or sensory nerve and recording the response, and needle electromyography, where a thin needle or pin-like electrode is inserted into the muscle tissue to look for abnormal electrical activity.
Electrodiagnostic testing can help distinguish myopathies from neuropathies, which can help determine the course of further work-up. Most of the electrodiagnostic abnormalities seen in myopathies are also seen in neuropathies (nerve disorders). Electrodiagnostic abnormalities common to myopathies and neuropathies include; abnormal spontaneous activity (e.g., fibrillations, positive sharp waves, etc.) on needle EMG and, small amplitudes of the motor responses compound muscle action potential, or CMAP during nerve conduction studies. Many neuropathies, however, cause abnormalities of sensory nerve studies, whereas myopathies involve only the muscle, with normal sensory nerves. The most important factor distinguishing a myopathy from a neuropathy on needle EMG is the careful analysis of the motor unit action potential (MUAP) size, shape, and recruitment pattern.
There is substantial overlap between the electrodiagnostic findings the various types of myopathy. Thus, electrodiagnostic testing can help distinguish neuropathy from myopathy, but is not effective at distinguishing which specific myopathy is present, here muscle biopsy and perhaps subsequent genetic testing are required.
Without a known family history of LHON the diagnosis usually requires a neuro-ophthalmological evaluation and blood testing for mitochondrial DNA assessment. It is important to exclude other possible causes of vision loss and important associated syndromes such as heart electrical conduction system abnormalities. The prognosis for those affected left untreated is almost always that of continued significant visual loss in both eyes. Regular corrected visual acuity and perimetry checks are advised for follow up of affected individuals. There is beneficial treatment available for some cases of this disease especially for early onset disease. Also, experimental treatment protocols are in progress. Genetic counselling should be offered. Health and lifestyle choices should be reassessed particularly in light of toxic and nutritional theories of gene expression. Vision aides assistance and work rehabilitation should be used to assist in maintaining employment.
For those who are carriers of a LHON mutation, preclinical markers may be used to monitor progress. For example, fundus photography can monitor nerve fiber layer swelling. Optical coherence tomography can be used for more detailed study of retinal nerve fiber layer thickness. Red green color vision testing may detect losses. Contrast sensitivity may be diminished. There could be an abnormal electroretinogram or visual evoked potentials. Neuron-specific enolase and axonal heavy chain neurofilament blood markers may predict conversion to affected status.
Cyanocobalamin (a form of B12) may also be used.
Avoiding optic nerve toxins is generally advised, especially tobacco and alcohol. Certain prescription drugs are known to be a potential risk, so all drugs should be treated with suspicion and checked before use by those at risk. Ethambutol, in particular, has been implicated as triggering visual loss in carriers of LHON. In fact, toxic and nutritional optic neuropathies may have overlaps with LHON in symptoms, mitochondrial mechanisms of disease and management. Of note, when a patient carrying or suffering from LHON or toxic/nutritional optic neuropathy suffers a hypertensive crisis as a possible complication of the disease process, nitroprusside (trade name: Nipride) should not be used due to increased risk of optic nerve ischemia in response to this anti-hypertensive in particular.
Idebenone has been shown in a small placebo controlled trial to have modest benefit in about half of patients. People most likely to respond best were those treated early in onset.
α-Tocotrienol-quinone, a vitamin E metabolite, has had some success in small open label trials in reversing early onset vision loss.
There are various treatment approaches which have had early trials or are proposed, none yet with convincing evidence of usefulness or safety for treatment or prevention including brimonidine, minocycline, curcumin,
glutathione, near infrared light treatment, and viral vector techniques.
"Three person in vitro fertilization" is a proof of concept research technique for preventing mitochondrial disease in developing human fetuses. So far, viable macaque monkeys have been produced. But ethical and knowledge hurdles remain before use of the technique in humans is established.
Arts syndrome should be included in the differential diagnosis of infantile hypotonia and weakness aggravated by recurrent infection with a family history of X-linked inheritance. Sequence analysis of PRPS1, the only gene associated with Arts syndrome, has detected mutations in both kindreds reported to date. Arts syndrome patients were also found to have reduced levels of hypoxanthine levels in urine and uric acid levels in the serum. In vitro, PRS-1 activity was reduced in erythrocytes and fibroblasts.
On examination of muscle biopsy material, the nuclear material is located predominantly in the center of the muscle cells, and is described as having any "myotubular" or "centronuclear" appearance. In terms of describing the muscle biopsy itself, "myotubular" or "centronuclear” are almost synonymous, and both terms point to the similar cellular-appearance among MTM and CNM. Thus, pathologists and treating physicians use those terms almost interchangeably, although researchers and clinicians are increasingly distinguishing between those phrases.
In general, a clinical myopathy and a muscle biopsy showing a centronuclear (nucleus in the center of the muscle cell) appearance would indicate a centronuclear myopathy (CNM). The most commonly diagnosed CNM is myotubular myopathy (MTM). However, muscle biopsy analysis alone cannot reliably distinguish myotubular myopathy from other forms of centronuclear myopathies, and thus genetic testing is required.
Diagnostic workup is often coordinated by a treating neurologist. In the United States, care is often coordinated through clinics affiliated with the Muscular Dystrophy Association.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Electrophysiological evidence of denervation with intact motor and sensory nerve conduction findings must be made by using nerve conduction studies, usually in conjunction with EMG. The presence of polyphasic potentials and fibrillation at rest are characteristic of congenital dSMA.
The following are useful in diagnosis:
- Nerve conduction studies (NCS), to test for denervation
- Electromyography (EMG), also to detect denervation
- X-ray, to look for bone abnormalities
- Magnetic resonance imaging (MRI)
- Skeletal muscle biopsy examination
- Serum creatine kinase (CK) level in blood, usually elevated in affected individuals
- Pulmonary function test
In regards to the diagnosis of spinal and bulbar muscular atrophy, the "AR Xq12" gene is the focus. Many mutations are reported and identified as missense/nonsense, that can be identified with 99.9% accuracy. Test for this gene in the majority of affected patients yields the diagnosis.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
As our understanding of mitochondrial diseases improves a degree of similarity and overlap are seen within this group of disorders. For example, in some OPA1 carriers, patients will develop neurological features indistinguishable from HSP while others develop a pattern of peripheral neuropathy with a similar disease course to CMT, and still others will develop a prominent cerebellar syndrome consistent with FRDA.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
The first symptom is typically diabetes mellitus, which is usually diagnosed around the age of 6. The next symptom to appear is often optic atrophy, the wasting of optic nerves, around the age of 11. The first signs of this are loss of colour vision and peripheral vision. The condition worsens over time, and people with optic atrophy are usually blind within 8 years of the first symptoms. Life expectancy of people suffering from this syndrome is about 30 years.
In Northern European populations about one in 9000 people carry one of the three primary LHON mutations.
The LHON ND4 G11778A mutation dominates as the primary mutation in most of the world
with 70% of Northern European cases and 90% of Asian cases. Due to a Founder effect, the LHON ND6 T14484C mutation accounts for 86% of LHON cases in Quebec, Canada.
More than 50 percent of males with a mutation and more than 85 percent of females with a mutation never experience vision loss or related medical problems. The particular mutation type may predict the likelihood of penetrance, severity of illness and probability of vision recovery in the affected. As a rule of thumb, a woman who harbors a homoplasmic primary LHON mutation has a ~40% risk of having an affected son and a ~10% risk of having an affected daughter.
Additional factors may determine whether a person develops the signs and symptoms of this disorder. Environmental factors such as smoking and alcohol use may be involved, although studies of these factors have produced conflicting results. Researchers are also investigating whether changes in additional genes, particularly genes on the X chromosome,
An accurate diagnosis of retinitis pigmentosa relies on the documentation of the progressive loss photoreceptor cell function, confirmed by a combination of visual field and visual acuity tests, fundus and optical coherence imagery, and electroretinography (ERG),
Visual field and acuity tests measure and compare the size of the patient's field of vision and the clarity of their visual perception with the standard visual measurements associated with healthy 20/20 vision. Clinical diagnostic features indicative of retinitis pigmentosa include a substantially small and progressively decreasing visual area in the visual field test, and compromised levels of clarity measured during the visual acuity test. Additionally, optical tomography such as fundus and retinal (optical coherence) imagery provide further diagnostic tools when determining an RP diagnosis. Photographing the back of the dilated eye allows the confirmation of bone spicule accumulation in the fundus, which presents during the later stages of RP retinal degeneration. Combined with cross-sectional imagery of optical coherence tomography, which provides clues into photoreceptor thickness, retinal layer morphology, and retinal pigment epithelium physiology, fundus imagery can help determine the state of RP progression.
While visual field and acuity test results combined with retinal imagery support the diagnosis of retinitis pigmentosa, additional testing is necessary to confirm other pathological features of this disease. Electroretinography (ERG) confirms the RP diagnosis by evaluating functional aspects associated with photoreceptor degeneration, and can detect physiological abnormalities before the initial manifestation of symptoms. An electrode lens is applied to the eye as photoreceptor response to varying degrees of quick light pulses is measured. Patients exhibiting the retinitis pigmentosa phenotype would show decreased or delayed electrical response in the rod photoreceptors, as well as possibly compromised cone photoreceptor cell response.
The patient's family history is also considered when determining a diagnosis due to the genetic mode of inheritance of retinitis pigmentosa. At least 35 different genes or loci are known to cause "nonsyndromic RP" (RP that is not the result of another disease or part of a wider syndrome). Indications of the RP mutation type can be determine through DNA testing, which is available on a clinical basis for:
- (autosomal recessive, Bothnia type RP)
- (autosomal dominant, RP1)
- (autosomal dominant, RP4)
- (autosomal dominant, RP7)
- (autosomal dominant, RP13)
- (autosomal dominant, RP18)
- CRB1 (autosomal recessive, RP12)
- (autosomal recessive, RP19)
- (autosomal recessive, RP20)
For all other genes (e.g. DHDDS), molecular genetic testing is available on a research basis only.
RP can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. X-linked RP can be either recessive, affecting primarily only males, or dominant, affecting both males and females, although males are usually more mildly affected. Some digenic (controlled by two genes) and mitochondrial forms have also been described.
Genetic counseling depends on an accurate diagnosis, determination of the mode of inheritance in each family, and results of molecular genetic testing.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
ONH is diagnosed by ophthalmoscopic examination. Patients with ONH exhibit an optic nerve that appears smaller than normal and different in appearance from small optic nerves caused by other eye conditions such as optic (nerve) atrophy.
DM:DD ratio has proven to be a clinically useful measurement to help diagnose optic nerve hypoplasia. Where "DM" represents the distance from Disk to Macula, and "DD" represents Disc Diameter.
The mean disc diameter (DD) is (Vertical diameter of Disc+Horizontal diameter of Disc)divided by 2. The distance between the center of the disc and the macula is DM.
"Interpretation:" When the ratio of DM to DD is greater than 3, ONH is suspected, and when it is greater than 4, Optic Nerve Hypoplasia is definite.
Diagnosis is made by an ophthalmologist during eye examination. Further tests such as fluorescein angiography or lumbar puncture are usually performed to confirm the diagnosis.
Neurosarcoidosis is a similar autoimmune disorder that can be confused with APMPPE.
The fundus exam via ophthalmoscopy is essentially normal early on in cone dystrophy, and definite macular changes usually occur well after visual loss. Fluorescein angiography (FA) is a useful adjunct in the workup of someone suspected to have cone dystrophy, as it may detect early changes in the retina that are too subtle to be seen by ophthalmoscope. For example, FA may reveal areas of hyperfluorescence, indicating that the RPE has lost some of its integrity, allowing the underlying fluorescence from the choroid to be more visible. These early changes are usually not detected during the ophthalmoscopic exam.
The most common type of macular lesion seen during ophthalmoscopic examination has a bull’s-eye appearance and consists of a doughnut-like zone of atrophic pigment epithelium surrounding a central darker area. In another, less frequent form of cone dystrophy there is rather diffuse atrophy of the posterior pole with spotty pigment clumping in the macular area. Rarely, atrophy of the choriocapillaris and larger choroidal vessels is seen in patients at an early stage. The inclusion of fluorescein angiography in the workup of these patients is important since it can help detect many of these characteristic ophthalmoscopic features. In addition to the retinal findings, temporal pallor of the optic disc is commonly observed.
As expected, visual field testing in cone dystrophy usually reveals a central scotoma. In cases with the typical bull’s-eye appearance, there is often relative central sparing.
Because of the wide spectrum of fundus changes and the difficulty in making the diagnosis in the early stages, electroretinography (ERG) remains the best test for making the diagnosis. Abnormal cone function on the ERG is indicated by a reduced single-flash and flicker response when the test is carried out in a well-lit room (photopic ERG). The relative sparing of rod function in cone dystrophy is evidenced by a normal scotopic ERG, i.e. when the test is carried out in the dark. In more severe or longer standing cases, the dystrophy involves a greater proportion of rods with resultant subnormal scotopic records. Since cone dystrophy is hereditary and can be asymptomatic early on in the disease process, ERG is an invaluable tool in the early diagnosis of patients with positive family histories.
Cone dystrophy in general usually occurs sporadically. Hereditary forms are usually autosomal dominant, and instances of autosomal recessive and X-linked inheritance also occur.
In the differential diagnosis, other macular dystrophies as well as the hereditary optic atrophies must be considered. Fluorescent angiography, ERG, and color vision tests are important tools to help facilitate diagnosis in early stages.
The diagnosis is based on observing the patient and finding the constellation of symptoms and signs described above. A few blood tests help, by showing signs of long standing inflammation. There is no specific test for the disease, though now that the gene that causes the disease is known, that may change.
Routine laboratory investigations are non specific: anaemia, increased numbers of polymorphs, an elevated erythrocyte sedimentation rate and elevated concentrations of C-reactive protein are typically all the abnormalities found. Lumbar puncture shows elevated levels of polymorphs (20-70% of cases) and occasionally raised eosinophil counts (0-30% of cases). CSF neopterin may be elevated.
The X ray changes are unique and charactistic of this syndrome. These changes include bony overgrowth due to premature ossification of the patella and the long bone epiphyses in very young children and bowing of long bones with widening and shortening periosteal reaction in older ones.
Audiometry shows a progressive sensineural deafness. Visual examination shows optic atrophy and an increase in the blind spot. CT is usually normal but may show enlargement of the ventricles. MRI with contrast may show enhancement of leptomeninges and cochlea consistent with chronic meningitis. EEG shows is non specific with slow waves and spike discharges.
Polymorphs tend to show increased expression of CD10.
In terms of the diagnosis of Becker muscular dystrophy symptom development resembles that of Duchenne muscular dystrophy. A physical exam indicates lack of pectoral and upper arm muscles, especially when the disease is unnoticed through the early teen years. Muscle wasting begins in the legs and pelvis, then progresses to the muscles of the shoulders and neck. Calf muscle enlargement (pseudohypertrophy) is quite obvious. Among the exams/tests performed are:
- Muscle biopsy
- Creatine kinase test
- Electromyography (shows that weakness is caused by destruction of muscle tissue rather than by damage to nerves.)
- Genetic testing
Still's disease does not affect children under 6 months old.
Hyperimmunoglobulin D syndrome in 50% of cases is associated with mevalonate kinase deficiency which can be measured in the leukocytes.
The long-term prognosis for patients with Stargardt disease is widely variable although the majority of people will progress to legal blindness.
Stargardt disease has no impact on general health and life expectancy is normal. Some patients, usually those with the late onset form, can maintain excellent visual acuities for extended periods, and are therefore able to perform tasks such as reading or driving.