Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The ring 20 abnormality may be limited to as few as 5% of cells, so a screen for chromosomal mosaicism is critical. Newer array technology will not detect the ring chromosome and the standard metaphase chromosome analysis has been recommended. A karyotype analysis examining at least 50 cells should be requested to properly detect mosaicism.
Diagnosis can be made by EEG. In case of epileptic spasms, EEG shows typical patterns.
The presence of porencephalic cysts or cavities can be detected using trans-illumination of the skull of infant patients. Porencephaly is usually diagnosed clinically using the patients and families history, clinical observations, or based on the presence of certain characteristic neurological and physiological features of porencephaly. Advanced medical imaging with computed tomography (CT), magnetic resonance imaging (MRI), or with ultrasonography can be used as a method to exclude other possible neurological disorders. The diagnosis can be made antenatally with ultrasound. Other assessments include memory, speech, or intellect testing to help further determine the exact diagnose of the disorder.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
Limited data is available for the long-term prognosis of ring chromosome 20 syndrome since only over 60 patients with this syndrome have been reported in published literature. Optimal control of seizures appears to be the determining factor, but early diagnosis and a comprehensive management plan with multidisciplinary support is also thought be to be important.
Occasionally the syndrome is referred to as "idiopathic" West syndrome, when a cause cannot be determined. Important diagnostic criteria are:
- Regular development until the onset of the attacks or before the beginning of the therapy
- no pathological findings in neurological or neuroradiological studies
- no evidence of a trigger for the spasms
Those are becoming rare due to modern medicine.
The test is particularly indicated in children who have had cluster seizures in series. It is also recommended for patients who are diagnosed GEFS+ and when the seizures are associated with fever, infection, experienced regression, delayed cognitive growth or behavioral problems. The test is typically ordered by neurologists. The diagnostic test can be done by drawing blood or saliva of the patient and their immediate family. It is analyzed in laboratories that specialize in genetic testing. Genetic testing can aid in a firmer diagnosis and understanding of the disorder, may aid in identifying the optimal treatment plan and if positive, testing of the parents can determine if they are carriers. (See Genetic Counseling)
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
PCDH19 gene-related epilepsy is clinically based on patient and family seizure history, cognitive and behavioral neuropsychological evaluation, neurological examination, electroencephalogram (EEG) studies, and long term observation. Diagnosis is confirmed using molecular testing for PCDH19 mutations.
Aicardi syndrome is typically characterized by the following triad of features - however, one of the "classic" features being missing does not preclude a diagnosis of Aicardi Syndrome, if other supporting features are present.
1. Partial or complete absence of the corpus callosum in the brain (agenesis of the corpus callosum);
2. Eye abnormalities known as "lacunae" of the retina that are quite specific to this disorder; [optic nerve coloboma]]; and
3. The development in infancy of seizures that are called infantile spasms.
Other types of defects of the brain such as microcephaly, polymicrogyria, porencephalic cysts and enlarged cerebral ventricles due to hydrocephalus are also common in Aicardi syndrome.
Under the United States federal government, the National Institute of Neurological Disorders and Stroke and National Institute of Health are involved in conducting and supporting research related to normal and abnormal brain and nervous system development. Information gained from the research is used to develop understanding of the mechanism of porencephaly and used to offer new methods of treatment and prevention for developmental brain disorders such as porencephaly.
Onset of adult GM1 is between ages 3 and 30.
Symptoms include muscle atrophy, neurological complications that are less severe and progress at a slower rate than in other forms of the disorder, corneal clouding in some patients, and dystonia (sustained muscle contractions that cause twisting and repetitive movements or abnormal postures). Angiokeratomas may develop on the lower part of the trunk of the body. Most patients have a normal size liver and spleen.
Prenatal diagnosis is possible by measurement of Acid Beta Galactosidase in cultured amniotic cells.
Clinical examination and MRI are often the first steps in a MLD diagnosis. MRI can be indicative of MLD, but is not adequate as a confirming test.
An ARSA-A enzyme level blood test with a confirming urinary sulfatide test is the best biochemical test for MLD. The confirming urinary sulfatide is important to distinguish between MLD and pseudo-MLD blood results.
Genomic sequencing may also confirm MLD, however, there are likely more mutations than the over 200 already known to cause MLD that are not yet ascribed to MLD that cause MLD so in those cases a biochemical test is still warranted.
"For further information, see the MLD Testing page at MLD Foundation."
Fumarase deficiency is extremely rare - until around 1990 there had only been 13 diagnosed and identified cases worldwide.
A cluster of 20 cases has since been documented in the twin towns of Colorado City, Arizona and Hildale, Utah among an inbred community of the Fundamentalist Church of Jesus Christ of Latter Day Saints.
Diagnosis is made on the basis of the association of gastro-oesophageal reflux with the characteristic movement disorder. Neurological examination is usually normal. Misdiagnosis as benign infantile spasms or epileptic seizures is common, particularly where clear signs or symptoms of gastro-oesophageal reflux are not apparent. Early diagnosis is critical, as treatment is simple and leads to prompt resolution of the movement disorder.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
Most infants with infantile cortical hyperostosis are diagnosed by physical examination. X-rays can confirm the presence of bone changes and soft tissue swelling. Biopsy of the affected areas can confirm the presence of typical histopathological changes. No specific blood tests exist, but tests such as erythrocyte sedimentation rate (ESR) and alkaline phosphatase levels are often elevated. A complete blood count may show anemia (low red blood cell count) and leukocytosis (high white blood cell count). Other tests may be done to help exclude other diagnoses. Ultrasound imaging can help diagnose prenatal cases.
In affected individuals presenting with the ICCA syndrome, the human genome was screened with microsatellite markers regularly spaced, and strong evidence of linkage with the disease was obtained in the pericentromeric region of chromosome 16, with a maximum lod score, for D16S3133 of 6.76 at a recombination fraction of 0. The disease gene has been mapped at chromosome 16p12-q12.This linkage has been confirmed by different authors. The chromosome 16 ICCA locus shows complicated genomic architecture and the ICCA gene remains unknown.
Because vision loss is often an early sign, Batten disease/NCL may be first suspected during an eye exam. An eye doctor can detect a loss of cells within the eye that occurs in the three childhood forms of Batten disease/NCL. However, because such cell loss occurs in other eye diseases, the disorder cannot be diagnosed by this sign alone. Often an eye specialist or other physician who suspects Batten disease/NCL may refer the child to a neurologist, a doctor who specializes in disease of the brain and nervous system. In order to diagnose Batten disease/NCL, the neurologist needs the patient's medical history and information from various laboratory tests.
Diagnostic tests used for Batten disease/NCLs include:
- Skin or tissue sampling. The doctor can examine a small piece of tissue under an electron microscope. The powerful magnification of the microscope helps the doctor spot typical NCL deposits. These deposits are found in many different tissues, including skin, muscle, conjunctiva, rectal and others. Blood can also be used. These deposits take on characteristic shapes, depending on the variant under which they are said to occur: granular osmophilic deposits (GRODs) are generally characteristic of INCL, while curvilinear profiles, fingerprint profiles, and mixed-type inclusions are typically found in LINCL, JNCL, and ANCL, respectively.
- Electroencephalogram or EEG. An EEG uses special patches placed on the scalp to record electrical currents inside the brain. This helps doctors see telltale patterns in the brain's electrical activity that suggest a patient has seizures.
- Electrical studies of the eyes. These tests, which include visual-evoked responses (VER) and electroretinograms (ERG), can detect various eye problems common in childhood Batten disease/NCLs.
- Brain scans. Imaging can help doctors look for changes in the brain's appearance. The most commonly used imaging technique is computed tomography (CT), which uses x-rays and a computer to create a sophisticated picture of the brain's tissues and structures. A CT scan may reveal brain areas that are decaying in NCL patients. A second imaging technique that is increasingly common is magnetic resonance imaging, or MRI. MRI uses a combination of magnetic fields and radio waves, instead of radiation, to create a picture of the brain.
- Enzyme assay. A recent development in diagnosis of Batten disease/NCL is the use of enzyme assays that look for specific missing lysosomal enzymes for infantile and late infantile only. This is a quick and easy diagnostic test.
There are several different forms of glycine encephalopathy, which can be distinguished by the age of onset, as well as the types and severity of symptoms. All forms of glycine encephalopathy present with only neurological symptoms, including mental retardation (IQ scores below 20 are common), hypotonia, apneic seizures, and brain malformations.
With the classical, or neonatal presentation of glycine encephalopathy, the infant is born after an unremarkable pregnancy, but presents with lethargy, hypotonia, apneic seizures and myoclonic jerks, which can progress to apnea requiring artificial ventilation, and often death. Apneic patients can regain spontaneous respiration in their second to third week of life. After recovery from the initial episode, patients have intractable seizures and profound mental retardation, remaining developmentally delayed. Some mothers comment retrospectively that they noticed fetal rhythmic "hiccuping" episodes during pregnancy, most likely reflecting seizure episodes in utero. Patients with the infantile form of glycine encephalopathy do not show lethargy and coma in the neonatal period, but often have a history of hypotonia. They often have seizures, which can range in severity and responsiveness to treatment, and they are typically developmentally delayed. Glycine encephalopathy can also present as a milder form with episodic seizures, ataxia, movement disorders, and gaze palsy during febrile illness. These patients are also developmentally delayed, to varying degrees. In the later onset form, patients typically have normal intellectual function, but present with spastic diplegia and optic atrophy.
Transient neonatal hyperglycinemia has been described in a very small number of cases. Initially, these patients present with the same symptoms and laboratory results that are seen in the classical presentation. However, levels of glycine in plasma and cerebrospinal fluid typically normalize within eight weeks, and in five of six cases there were no neurological issues detected at follow-up times up to thirteen years. A single patient was severely retarded at nine months. The suspected cause of transient neonatal hyperglicinemia is attributed to low activity of the glycine cleavage system in the immature brain and liver of the neonate.
The diagnosis or suspicion of LGS is often a question of probability rather than certainty. This is because the varied presentations of LGS share features with other disorders, many of which may be said to have overlapping characteristics.
The diagnosis is more obvious when the epilepsy has frequent and manifold attacks, with the classic pattern on the electro-encephalogram (EEG); the latter is a slowed rhythm with Spike-wave-pattern, or with a multifocal and generalizing Sharp-slow-wave-discharges at 1.5–2.5 Hz. During sleep, frequently, tonic patterns can be seen. But variations of these patterns are known in patients with no diagnosis other than LGS, and they can differ bilaterally, and from time to time, within the same patient.
General medical investigation usually reveals developmental delay and cognitive deficiencies in children with true LGS. These may precede development of seizures, or require up to two years after the seizures begin, in order to become apparent.
Exclusion of organic or structural brain lesions is also important in establishing a correct diagnosis of LGS; this may require magnetic resonance imaging (MRI) or computerized tomography (CT). An important differential diagnosis is 'Pseudo-Lennox-Syndrome', which differs from LGS, in that there are no tonic seizures; sleeping EEG provides the best basis for distinguishing between the two.
Osteomyelitis (bone infection), which is much more common than infantile cortical hyperostosis, must be excluded, since it requires urgent treatment. Other diagnoses that can mimic this disorder and need to be excluded include physical trauma, child abuse, Vitamin A excess, hyperphosphatemia, prostaglandin E1 and E2 administration, scurvy, infections (including syphilis), Ewing sarcoma, and metastatic neuroblastoma.
The prognosis is very poor. Two studies reported typical age of deaths in infancy or early childhood, with the first reporting a median age of death of 2.6 for boys and less than 1 month for girls.
Intravenous immunoglobulin therapy has been used in Lennox–Gastaut syndrome as early as 1986, when van Rijckevorsel-Harmant and colleagues used it in seven patients with ostensibly idiopathic LGS and saw EEG improvement and decreased seizure frequency in six of them.