Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
It is recommended to parents and caregivers to take their children to a dental professional for examination as soon as the first few teeth start to erupt into the oral cavity
. The dental professional will assess all the present dentition for early carious demineralization and may provide recommendations to the parents or caregivers the best way to prevent ECC and what actions to take.
Studies suggest that children who have attended visits within the first few years of life (an early preventive dental visit) potentially experience less dental related issues and incur lower dental related costs throughout their lives.
There are two main methods of detecting dental plaque in the oral cavity: through the application of a disclosing gel or tablet, and/or visually through observation. Plaque detection is usually detected clinically by plaque disclosing agents. Disclosing agents contain dye which turns bright red to indicate plaque build-up.
It is important for an individual to be aware of what to look for when doing a self-assessment for dental plaque. It is important to be aware that everyone has dental plaque, however, the severity of the build-up and the consequences of not removing the plaque can vary.
Early childhood caries can be prevented through the combination of the following: adhering to a healthy nutritional diet, optimal plaque removal, use of fluoridation on the tooth surface once erupted, care taken by the mother during the pre-natal and peri-natal period and regular dental visits. The following are recommendations to help prevent ECC.
MIH examination should be carried out on clean, wet teeth. The ideal age for examination is when the child is 8 years old - the age where all permanent first molars and most of the incisors are erupted. The permanent first molar will also still be in a comparatively sound condition without excessive post-eruption breakdown. Judgements of each individual teeth should be recorded, aiding the correct diagnosis of the condition.
There is currently a lack of standardisation in the scoring system and severity indices used to record the diagnosis of MIH. Various systems commonly employed in studies include:
- Modified Defect of Dental Enamel (DDE) Index: This set of criteria allows for enamel defects to be detected, enabling a distinction between demarcated and diffused opacities.
- European Academy of Paediatric Dentistry (EAPD) judgement criteria: This set of criteria was developed in 2003 to standardise classifications for use in epidemiological studies. However, while it allows the categorisation of the enamel condition, it does not address the severity of the enamel condition.
- Molar Hypomineralisation Severity Index (MHSI): This set of criteria has been developed to address deficiencies in indices concerning the severity of hypomineralisation. It is based on both the clinical characteristics of hypomineralised defects and the EAPD judgement criteria.
The diagnosis of impaction can be made clinically if enough of the wisdom tooth is visible to determine its angulation, depth, and if the patient is old enough that further eruption or uprighting is unlikely. Wisdom teeth continue to move into adulthood (20–30 years old) due to eruption and then continue some later movement owing to periodontal disease.
If the tooth cannot be assessed with clinical exam alone, the diagnosis is made using either a panoramic radiograph or cone-beam CT. Where unerupted wisdom teeth still have eruption potential several predictors are used to determine the chance of the teeth becoming impacted. The ratio of space between the tooth crown length and the amount of space available, the angle of the teeth compared to the other teeth are the two most commonly used predictors, with the space ratio being the most accurate. Despite the capacity for movement into early adulthood, the likelihood that the tooth will become impacted can be predicted when the ratio of space available to the length of the crown of the tooth is under 1.
Plaque disclosing products, also known as disclosants, make plaque clinically visible. Clean surfaces of the teeth do not absorb the disclosant, only rough surfaces. Plaque disclosing gels can be either completed at home or in the dental clinic. Before using these at home or in the dental clinic check with your general practitioners for any allergies to iodine, food colouring or any other ingredients that may be present in these products. These gels provide a visual aid in assessing plaque biofilm presence and can also show the maturity of the dental plaque.
The presentation of caries is highly variable. However, the risk factors and stages of development are similar. Initially, it may appear as a small chalky area (smooth surface caries), which may eventually develop into a large cavitation. Sometimes caries may be directly visible. However other methods of detection such as X-rays are used for less visible areas of teeth and to judge the extent of destruction. Lasers for detecting caries allow detection without ionizing radiation and are now used for detection of interproximal decay (between the teeth). Disclosing solutions are also used during tooth restoration to minimize the chance of recurrence.
Primary diagnosis involves inspection of all visible tooth surfaces using a good light source, dental mirror and explorer. Dental radiographs (X-rays) may show dental caries before it is otherwise visible, in particular caries between the teeth. Large areas of dental caries are often apparent to the naked eye, but smaller lesions can be difficult to identify. Visual and tactile inspection along with radiographs are employed frequently among dentists, in particular to diagnose pit and fissure caries. Early, uncavitated caries is often diagnosed by blowing air across the suspect surface, which removes moisture and changes the optical properties of the unmineralized enamel.
Some dental researchers have cautioned against the use of dental explorers to find caries, in particular sharp ended explorers. In cases where a small area of tooth has begun demineralizing but has not yet cavitated, the pressure from the dental explorer could cause a cavity. Since the carious process is reversible before a cavity is present, it may be possible to arrest caries with fluoride and remineralize the tooth surface. When a cavity is present, a restoration will be needed to replace the lost tooth structure.
At times, pit and fissure caries may be difficult to detect. Bacteria can penetrate the enamel to reach dentin, but then the outer surface may remineralize, especially if fluoride is present. These caries, sometimes referred to as "hidden caries", will still be visible on X-ray radiographs, but visual examination of the tooth would show the enamel intact or minimally perforated.
The differential diagnosis for dental caries includes dental fluorosis and developmental defects of the tooth including hypomineralization of the tooth and hypoplasia of the tooth.
The early carious lesion is characterized by demineralization of the tooth surface, altering the tooth's optical properties. Technology utilizing laser speckle image (LSI) techniques may provide a diagnostic aid to detect early carious lesions.
Personal hygiene care consists of proper brushing and flossing daily. The purpose of oral hygiene is to minimize any etiologic agents of disease in the mouth. The primary focus of brushing and flossing is to remove and prevent the formation of plaque or dental biofilm. Plaque consists mostly of bacteria. As the amount of bacterial plaque increases, the tooth is more vulnerable to dental caries when carbohydrates in the food are left on teeth after every meal or snack. A toothbrush can be used to remove plaque on accessible surfaces, but not between teeth or inside pits and fissures on chewing surfaces. When used correctly, dental floss removes plaque from areas that could otherwise develop proximal caries but only if the depth of sulcus has not been compromised. Other adjunct oral hygiene aids include interdental brushes, water picks, and mouthwashes.
However oral hygiene is probably more effective at preventing gum disease (periodontal disease) than tooth decay. Food is forced inside pits and fissures under chewing pressure, leading to carbohydrate-fueled acid demineralisation where the brush, fluoride toothpaste, and saliva have no access to remove trapped food, neutralise acid, or remineralise demineralised tooth like on other more accessible tooth surfaces. (Occlusal caries accounts for between 80 and 90% of caries in children (Weintraub, 2001).) Higher concentrations of fluoride (>1,000 ppm) in toothpaste also helps prevents tooth decay, with the effect increasing with concentration. Chewing fibre like celery after eating forces saliva inside trapped food to dilute any carbohydrate like sugar, neutralise acid and remineralise demineralised tooth. The teeth at highest risk for carious lesions are the permanent first and second molars due to length of time in oral cavity and presence of complex surface anatomy.
Professional hygiene care consists of regular dental examinations and professional prophylaxis (cleaning). Sometimes, complete plaque removal is difficult, and a dentist or dental hygienist may be needed. Along with oral hygiene, radiographs may be taken at dental visits to detect possible dental caries development in high-risk areas of the mouth (e.g. "bitewing" X-rays which visualize the crowns of the back teeth).
There is no standard to screen for wisdom teeth. It has been suggested, absent evidence to support routinely retaining or removing wisdom teeth, that evaluation with panoramic radiograph, starting between the ages of 16 and 25 be completed every 3 years. Once there is the possibility of the teeth developing disease, then a discussion about the operative risks versus long-term risk of retention with an oral and maxillofacial surgeon or other clinician trained to evaluate wisdom teeth is recommended. These recommendations are based on expert opinion level evidence. Screening at a younger age may be required if the second molars (the "12-year molars") fail to erupt as ectopic positioning of the wisdom teeth can prevent their eruption. Radiographs can be avoided if the majority of the tooth is visible in the mouth.
To manage the condition, it is important to first diagnose it, describing the type of tooth surface loss, its severity and location. Early diagnosis is essential to ensure tooth wear has not progressed past the point of restoration. A thorough examination is required, because it might give explanation to the aetiology of the TSL.
The examination should include assessment of:
- Temporomandibular joint function and associated musculature
- Orthodontic examination
- Intra oral soft tissue analysis
- Hard tissue analysis
- Location and severity of tooth wear
- Social history, particularly diet
It is important to record severity of tooth wear for monitoring purposes, helping to differentiate between pathological and physiological tooth surface loss. It is essential to determine whether the tooth wear is ongoing or has stabilized. However where generalised, the underlying cause can be assumed to be bruxism. In fast-progressing cases, there is commonly a coexisting erosive diet contributing to tooth surface loss.
Fluorosis is extremely common, with 41% of adolescents having definite fluorosis, and another 20% "questionably" having fluorosis according to the Centers for Disease Control.
The U.S. Centers for Disease Control found a 9 percentage point increase in the prevalence of confirmed dental fluorosis in a 1999-2002 study of American children and adolescents than was found in a similar survey from 1986-1987 (from 22.8% in 1986-1987 to 32% in 1999-2002). In addition, the survey provides further evidence that African Americans suffer from higher rates of fluorosis than Caucasian Americans.
The condition is more prevalent in rural areas where drinking water is derived from shallow wells or hand pumps. It is also more likely to occur in areas where the drinking water has a fluoride content greater than 1 ppm (part per million).
If the water supply is fluoridated at the level of 1 ppm, one must consume one litre of water in order to take in 1 mg of fluoride. It is thus improbable a person will receive more than the tolerable upper limit from consuming optimally fluoridated water alone.
Fluoride consumption can exceed the tolerable upper limit when someone drinks a lot of fluoride-containing water in combination with other fluoride sources, such as swallowing fluoridated toothpaste, consuming food with a high fluoride content, or consuming fluoride supplements. The use of fluoride supplements as a prevention for tooth decay is rare in areas with water fluoridation, but was recommended by many dentists in the UK until the early 1990s.
Dental fluorosis can be prevented by lowering the amount of fluoride intake to below the tolerable upper limit.
In November 2006 the American Dental Association published information stating that water fluoridation is safe, effective and healthy; that enamel fluorosis, usually mild and difficult for anyone except a dental health care professional to see, can result from ingesting more than optimal amounts of fluoride in early childhood; that it is safe to use fluoridated water to mix infant formula; and that the probability of babies developing fluorosis can be reduced by using ready-to-feed infant formula or using water that is either free of fluoride or low in fluoride to prepare powdered or liquid concentrate formula. They go on to say that the way to get the benefits of fluoride but minimize the risk of fluorosis for a child is to get the right amount of fluoride, not too much and not too little. "Your dentist, pediatrician or family physician can help you determine how to optimize your child’s fluoride intake."
Dental fluorosis may or may not be of cosmetic concern. In some cases, there may be varying degrees of negative psychosocial effects. The treatment options are:
- Tooth bleaching
- Micro-abrasion
- Composite fillings
- Veneers
- Crowns
Generally, more conservative options such as bleaching are sufficient for mild cases.
Prevention is of prior importance at an early developmental age as the defective tooth is more likely to have caries and post-eruptive breakdown due to its increased porosity. Appropriate dietary advice and toothpaste with a fluoride level of at least 1,000 ppm F should be recommended. For treating spontaneous hypersensitivity professional applications of fluoride varnish (e.g. Duraphat 22,600ppm F) or 0.4% stannous fluoride gel may be helpful.
Casein Phosphopepetide-Amorphus Calcium Phosphate (CPP-ACP) provides a supersaturated environment of calcium and phosphate on the enamel surface to enhance remineralisation in the form of toothpaste or sugar free chewing gum. Its clinical effectiveness is still debatable but may benefit those patients who complain of mild pain to external stimuli.
When a diagnosis of bruxism has been confirmed, it is recommended that the patient buy a full-coverage acrylic occlusal splint, such as a Michigan Splint or Tanner appliance, to prevent further bruxism. Patients must be monitored closely, with clinical photographs 6–12 monthly to evaluate if the tooth surface loss is being prevented.
Any tooth that is identified, in either the history of pain or base clinical exam, as a source for toothache may undergo further testing for vitality of the dental pulp, infection, fractures, or periodontitis. These tests may include:
- Pulp sensitivity tests, usually carried out with a cotton wool sprayed with ethyl chloride to serve as a cold stimulus, or with an electric pulp tester. The air spray from a three-in-one syringe may also be used to demonstrate areas of dentin hypersensitivity. Heat tests can also be applied with hot Gutta-percha. A healthy tooth will feel the cold but the pain will be mild and disappear once the stimulus is removed. The accuracy of these tests has been reported as 86% for cold testing, 81% for electric pulp testing, and 71% for heat testing. Because of the lack of test sensitivity, a second symptom should be present or a positive test before making a diagnosis.
- Radiographs utilized to find dental caries and bone loss laterally or at the apex.
- Assessment of biting on individual teeth (which sometimes helps to localize the problem) or the separate cusps (may help to detect cracked cusp syndrome).
Less commonly used tests might include trans-illumination (to detect congestion of the maxillary sinus or to highlight a crack in a tooth), dyes (to help visualize a crack), a test cavity, selective anaesthesia and laser doppler flowmetry.
Pulp sensibility tests are routinely used in the diagnosis of dental disease. There are 2 general types:
- Thermal-- most commonly, ethyl chloride sprayed onto a small ball of cotton wool, which produces intense cold. Alternatively gutta percha can be heated to produce heat.
- Electrical pulp test-- electric pulp testing (EPT) has been available for over a century and used by dentists worldwide. It is used to determine the health of the pulp and pulp-related pain. It does not provide information on vascular supply to the pulp. EPT produces electrical stimuli that cause an ionic change across the neural membrane, inducing an action potential in myelinated nerves. The threshold of pain level will be determined by increasing the voltage. The requirements of an EPT are appropriate application method, careful interpretation of the results, and an appropriate stimulus. The tests must be done with tooth isolation and conduction media. EPT is not recommended for patients with orthodontic bands or crowned teeth. Key factors in testing are the enamel and dentine thickness and the number of nerve fibers underlying the pulp. Pulp nerve fibers respond to lower current intensities and a small number of pulpal afferents, creating neural responses when electrical stimulation is applied. EPTs may be unreliable and lead to false-positive and false-negative results. False-positive responses in teeth may be attributed to pulpal necrosis. Also, since pulpal and periodontal nerve thresholds may overlap, the periodontal nerves may give a false indication in tooth sensibility.
Possible explanations for false-positives include:
- Response caused by conduction of the current because of periodontal or gingival issues
- Breakdown products associated with pulp necrosis may be able to conduct electric current next to infected and hypersensitive pulp tissue
- Inflamed pulp tissue may still be present
- Metallic restorations or orthodontic gear are still present
Studies have indicated that there is little correlation between histopathological status of the pulp and clinical information. A negative EPT response showed localized necrosis in 25.7% of cases and 72% of cases. Thus, 97.7% of cases with a negative response to EPT indicated that a root canal treatment should be carried out.
Most dental pain can be treated with routine dentistry. In rare cases, toothache can be a symptom representing a life-threatening condition, such as a deep neck infection (compression of the airway by a spreading odontogenic infection) or something more remote like a heart attack.
Dental caries, if left untreated, follows a predictable natural history as it nears the pulp of the tooth. First it causes reversible pulpitis, which transitions to irreversible pulpitis, then to necrosis, then to necrosis with periapical periodontitis and, finally, to necrosis with periapical abscess. Reversible pulpitis can be stopped by removal of the cavity and the placement of a sedative dressing of any part of the cavity that is near the pulp chamber. Irreversible pulpitis and pulp necrosis are treated with either root canal therapy or extraction. Infection of the periapical tissue will generally resolve with the treatment of the pulp, unless it has expanded to cellulitis or a radicular cyst. The success rate of restorative treatment and sedative dressings in reversible pulpitis, depends on the extent of the disease, as well as several technical factors, such as the sedative agent used and whether a rubber dam was used. The success rate of root canal treatment also depends on the degree of disease (root canal therapy for irreversible pulpitis has a generally higher success rate than necrosis with periapical abscess) and many other technical factors.
All impacted teeth, unless otherwise contraindicated, are considered for surgical removal. Thus, dental extractions will often take place. The type of extraction (simple or surgical) often depends on the location of the teeth.
In some cases, for aesthetic purposes, a surgeon may wish to expose the canine. This may be achieved through open or closed exposure. Studies show no advantage of one method over another.
Once the pulp has become inflamed, the tooth can be diagnostically divided into two categories.
- Reversible pulpitis
- Irreversible pulpitis
Treatment for TRs is limited to tooth extraction because the lesion is progressive. Amputation of the tooth crown without root removal has also been advocated in cases demonstrated on a radiograph to be type 2 resorption without associated periodontal or endodontic disease because the roots are being replaced by bone. However, X-rays are recommended prior to this treatment to document root resorption and lack of the periodontal ligament.
Tooth restoration is not recommended because resorption of the tooth will continue underneath the restoration. Use of alendronate has been studied to prevent TRs and decrease progression of existing lesions.
Most commonly the individual complains of food getting lodged beneath the gums and a soreness that is usually confused with throat infections. In slightly milder forms a swelling is visible and mouth opening becomes difficult in severe cases. Pain is invariably present.
The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for some minerals in 1997. Where there was not sufficient information to establish EARs and RDAs, an estimate designated Adequate Intake (AI) was used instead. AIs are typically matched to actual average consumption, with the assumption that there appears to be a need, and that need is met by what people consume. The current AI for women 19 years and older is 3.0 mg/day (includes pregnancy and lactation). The AI for men is 4.0 mg/day. The AI for children ages 1-18 increases from 0.7 to 3.0 mg/day. As for safety, the IOM sets Tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of fluoride the UL is 10 mg/day. Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).
The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL defined the same as in United States. For women ages 18 and older the AI is set at 2.9 mg/day (includes pregnancy and lactation). For men the value is 3.4 mg/day. For children ages 1–17 years the AIs increase with age from 0.6 to 3.2 mg/day. These AIs are comparable to the U.S. AIs. The EFSA reviewed safety evidence and set an adult UL at 7.0 mg/day (lower for children).
Tooth wear (also termed non-carious tooth substance loss) refers to loss of tooth substance by means other than dental caries or dental trauma. Tooth wear is a very common condition that occurs in approximately 97% of the population. This is a normal physiological process occurring throughout life, but accelerated tooth wear can become a problem.
Tooth wear is majorly the result of three processes; attrition, abrasion and erosion. These forms of tooth wear can further lead to a condition known as abfraction, where by tooth tissue is 'fractured' due to stress lesions caused by extrinsic forces on the enamel. Tooth wear is a complex, multi-factorial problem and there is difficulty identifying a single causative factor. However, tooth wear is often a combination of the above processes. Many clinicians therefore make diagnoses such as "tooth wear with a major element of attrition", or "tooth wear with a major element of erosion" to reflect this. This makes the diagnosis and management difficult. Therefore, it is important to distinguish between these various types of tooth wear, provide an insight into diagnosis, risk factors, and causative factors, in order to implement appropriate interventions.
Multiple indices have been developed in order to assess and record the degree of tooth wear, the earliest was that by Paul Broca. In 1984, Smith and Knight developed the tooth wear index (TWI) where four visible surfaces (buccal, cervical, lingual, occlusal-incisal) of all teeth present are scored for wear, regardless of the cause.
Attrition is loss of tooth substance caused by physical tooth-to-tooth contact. The word attrition is derived from the Latin verb "attritium", which refers to the action of rubbing against something. Attrition mostly causes wear of the incisal and occlusal surfaces of the teeth. Attrition has been associated with masticatory force and parafunctional activity such as bruxism. A degree of attrition is normal, especially in elderly individuals.
Treatment options include antibiotic therapy (not a permanent solution), endodontic (root canal) therapy, or extraction.