Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The tests to verify Sack–Barabas syndrome are biochemical samples such as collagen typing (performed on a skin biopsy sample) or collagen gene mutation testing. There is no cure for Ehlers-Danlos syndrome, so individual problems and symptoms must be evaluated and cared for accordingly.
The key for managing Sack–Barabas syndrome is for the patient to be aware of their disease. Close follow up and planning of interventions can significantly prolong and maintain the quality of life of a patient with this disease.
Pregnant affected women must take special care due to the increased risk of premature death due to rupture of arteries, bowel or uterine rupture with a reported mortality rate of 50%.
Genetic counselling is recommended for prospective parents with a family history of Ehlers–Danlos syndrome. Affected parents should be aware of the type of Ehlers-Danlos syndrome they have and its mode of inheritance.
A diagnosis can be made by an evaluation of medical history and clinical observation. The Beighton criteria are widely used to assess the degree of joint hypermobility. DNA and biochemical studies can help identify affected individuals. Diagnostic tests include collagen gene mutation testing, collagen typing via skin biopsy, echocardiogram, and lysyl hydroxylase or oxidase activity. However, these tests are not able to confirm all cases, especially in instances of an unmapped mutation, so clinical evaluation by a geneticist remains essential. If there are multiple affected individuals in a family, it may be possible to perform prenatal diagnosis using a DNA information technique known as a linkage study. There is poor knowledge about EDS among practitioners.
There are several disorders that share some characteristics with Ehlers–Danlos syndrome. For example, in cutis laxa the skin is loose, hanging, and wrinkled. In EDS, the skin can be pulled away from the body but is elastic and returns to normal when let go. In Marfan syndrome, the joints are very mobile and similar cardiovascular complications occur. People with EDS tend to have a "Marfanoid" appearance (e.g., tall, skinny, long arms and legs, "spidery" fingers). However, physical appearance and features in several types of Ehlers–Danlos syndrome also have characteristics including short stature, large eyes, and the appearance of a small mouth and chin, due to a small palate. The palate can have a high arch, causing dental crowding. Blood vessels can sometimes be easily seen through translucent skin, especially on the chest. The genetic connective tissue disorder, Loeys-Dietz Syndrome, also has symptoms that overlap with EDS.
In the past, Menkes disease, a copper metabolism disorder, was thought to be a form of Ehlers–Danlos syndrome. It is not uncommon for patients to be misdiagnosed with fibromyalgia, bleeding disorders or other disorders that can mimic EDS symptoms before a correct diagnosis is made. Because of these similar disorders and complications that can arise from an un-monitored case of EDS, a correct diagnosis is very important. Pseudoxanthoma elasticum (PXE) is worth consideration in diagnosing a patient.
Onset of adult GM1 is between ages 3 and 30.
Symptoms include muscle atrophy, neurological complications that are less severe and progress at a slower rate than in other forms of the disorder, corneal clouding in some patients, and dystonia (sustained muscle contractions that cause twisting and repetitive movements or abnormal postures). Angiokeratomas may develop on the lower part of the trunk of the body. Most patients have a normal size liver and spleen.
Prenatal diagnosis is possible by measurement of Acid Beta Galactosidase in cultured amniotic cells.
As of July 2000, hypermobility was diagnosed using the Brighton criteria. The Brighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:
MCAS is often difficult to identify due to the heterogeneity of symptoms and the "lack of flagrant acute presentation." The condition can also be difficult to diagnose, especially since many of the numerous symptoms may be considered "vague". Patients often see many different specialties due to the inherent multisystem nature of the condition, and do not get diagnosed until a holistic view is taken by a diagnostician. Lack of awareness of MCAS by many medical professionals is currently a hurdle to proper diagnosis.
1. Symptoms consistent with chronic/recurrent mast cell release: Recurrent abdominal pain, diarrhea, flushing, itching, nasal congestion, coughing, chest tightness, wheezing, lightheadedness (usually a combination of some of these symptoms is present)
2. Laboratory evidence of mast cell mediator (elevated serum tryptase, N-methyl histamine, prostaglandin D2 or 11-beta- prostaglandin F2 alpha, leukotriene E4 and others)
3. Improvement in symptoms with the use of medications that block or treat elevations in these mediators"
The World Health Organization has not published diagnostic criteria.
A diagnosis of EDS has been used as a defense in court for persons accused of committing violent crimes including murder.
Distal trisomy 10 is a rare chromosomal disorder that causes several physical defects and intellectual disability.
Humans, like all sexually reproducing species, have somatic cells that are in diploid [2N] state, meaning that N represent the number of chromosomes, and 2 the number of their copies. In humans, there are 23 chromosomes, but there are two sets of them, one from mother and one from father, totaling in 46, that are arranged according to their size, function and genes they carry. Each cell is supposed to have two of each, but sometimes due to mutations or malfunctions during cell division, mistakes are made that cause serious health problems. One such error is the cause of Distal trisomy 10q disorder.
Each chromosome has two arms, labeled p (for petite, or short) and q (for long). If both arms are equal in length, the chromosome is said to be metacentric. If arms' lengths are unequal, chromosome is said to be submetacentric, and if p arm is so short that is hard to observe, but still present, then the chromosome is acrocentric. In Distal Trisomy 10q disorder, end or distal portion of the q (long) arm of the chromosome number 10 appears to be present three times, rather than two times as it is supposed to be. This extra arm results in chromosome 10 trisomy, meaning that three arms are present. Depending on the length of the aberrant arm, the severity can vary from case to case. Often the source of this chromosomal error is a translocation in one of the parents. Sometimes it occurs spontaneously, in which case it is termed "de novo".
This syndrome has a large range of outcomes depending on how much chromosomal material is involved. Outcomes include: very slow postnatal growth, hypotonia, lack of coordination skills and mild to severe cases of intellectual disability, digestive issues, and heart and kidney problems. Individuals with this disorder can also be distinguished by their facial features. Number of support groups do exist in the United States, where affected families can meet and discuss problems they encounter, possible treatments and can find emotional support.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
There is no cure for MCAS. For most, symptoms wax and wane, but many can experience a general worsening trend over time. Lifespan for those with MCAS appears to be normal, but quality of life can range from mild discomfort to severely impaired. Some patients are impaired enough to be disabled and unable to work.
Treatment for EDS usually involves treating the underlying causative factor(s). This may involve psychotherapy, substance abuse treatment, or medical treatment for diseases.
EDS has been successfully controlled in clinical trials using prescribed medications, including Carbamazepine, Ethosuximide, and Propranolol.
It is important that hypermobile individuals remain fit - even more so than the average individual - to prevent recurrent injuries. Regular exercise and exercise that is supervised by a physician and physical therapist can reduce symptoms because strong muscles increase dynamic joint stability. Low-impact exercise such as closed chain kinetic exercises are usually recommended as they are less likely to cause injury when compared to high-impact exercise or contact sports.
Heat and cold treatment can help temporarily to relieve the pain of aching joints and muscles but does not address the underlying problems.
Diagnosis is confirmed histologically by tissue biopsy. Hematoxylin-eosin stain of biopsy slide will show features of Langerhans Cell e.g. distinct cell margin, pink granular cytoplasm. Presence of Birbeck granules on electron microscopy and immuno-cytochemical features e. g. CD1 positivity are more specific. Initially routine blood tests e.g. full blood count, liver function test, U&Es, bone profile are done to determine disease extent and rule out other causes. Radiology will show osteolytic bone lesions and damage to the lung. The latter may be evident in chest X-rays with micronodular and interstitial infiltrate in the mid and lower zone of lung, with sparing of the Costophrenic angle or honeycomb appearance in older lesions. MRI and CT may show infiltration in sella turcica. Assessment of endocrine function and bonemarrow biopsy are also performed when indicated.
- S-100 protein is expressed in a cytoplasmic pattern
- peanut agglutinin (PNA) is expressed on the cell surface and perinuclearly
- major histocompatibility (MHC) class II is expressed (because histiocytes are macrophages)
- CD1a
- langerin (CD207), a Langerhans Cell–restricted protein that induces the formation of Birbeck granules and is constitutively associated with them, is a highly specific marker.
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
Diagnosis is based on the demonstration of vascular lesions in large and middle-sized vessels on angiography, CT scan, magnetic resonance angiography or FDG PET. FDG PET can help in diagnosis of active inflammation not just in patients with active Takayasu arteritis prior to treatment but also in addition in relapsing patients receiving immunosuppressive agents.
Contrast angiography has been the gold standard. The earliest detectable lesion is a local narrowing or irregularity of the lumen. This may develop into stenosis and occlusion. The characteristic finding is the presence of "skip lesions," where stenosis or aneurysms alternate with normal vessels. Angiography provides information on vessel anatomy and patency but does not provide information on the degree of inflammation in the wall.
The age at onset helps to differentiate Takayasu's arteritis from other types of large vessel vasculitis. For example, Takaysu's arteritis has an age of onset of 60 years.
Takayasu arteritis is not associated with ANCA, rheumatoid factor, ANA, and anticardiolipin antibodies.
The condition can be diagnosed via exam that reveals; generalized redness; thick, generally dark, scales that tend to form parallel rows of spines or ridges,especially near large joints; the skin is fragile and blisters easily following trauma; extent of blistering and amount of scale is variable
The disorder can be considered very likely in a totally blind person with periodic insomnia and daytime sleepiness, although other causes for these common symptoms need to be ruled out. In the research setting, the diagnosis can be confirmed, and the length of the free-running circadian cycle can be ascertained, by periodic assessment of circadian marker rhythms, such as the core body temperature rhythm, the timing of melatonin secretion, or by analyzing the pattern of the sleep–wake schedule using actigraphy. Most recent research has used serial measurements of melatonin metabolites in urine or melatonin concentrations in saliva. These assays are not currently available for routine clinical use.
Since 1979, the disorder has been recognized by the American Academy of Sleep Medicine:
- "Diagnostic Classification of Sleep and Arousal Disorders" (DCSAD), 1979: Non-24-Hour Sleep–Wake Syndrome; code C.2.d
- "The International Classification of Sleep Disorders", 1st & Revised eds. (ICSD), 1990, 1997: Non-24-Hour Sleep–Wake Syndrome (or Non-24-Hour Sleep–Wake Disorder); code 780.55-2
- "The International Classification of Sleep Disorders", 2nd ed. (ICSD-2), 2005: Non-24-Hour Sleep–Wake Syndrome (alternatively, Non-24-Hour Sleep–Wake Disorder); code 780.55-2
Since 2005, the disorder has been recognized by name in the U.S. National Center for Health Statistics and the U.S. Centers for Medicare and Medicaid Services in their adaptation and extension of the WHO's "International Statistical Classification of Diseases and Related Health Problems" (ICD):
- ICD-9-CM: Circadian rhythm sleep disorder, free-running type; code 327.34 became effective in October 2005. Prior to the introduction of this code, the nonspecific code 307.45, Circadian rhythm sleep disorder of nonorganic origin, was available, and as of 2014 remains the code recommended by the DSM-5.
- ICD-10-CM: Circadian rhythm sleep disorder, free running type; code G47.24 is due to take effect October 1, 2014.
Since 2013, the disorder has been recognized by the American Psychiatric Association:
- DSM-5, 2013: Circadian rhythm sleep–wake disorders, Non-24-hour sleep–wake type; ICD-9-CM code 307.45 is recommended (no acknowledgment of 327.34 is made), and ICD-10-CM code G47.24 is recommended when it goes into effect.
Excellent for single-focus disease. With multi-focal disease 60% have a chronic course, 30% achieve remission and mortality is up to 10%.
A skin biopsy for the measurement of epidermal nerve fiber density is an increasingly common technique for the diagnosis of small fiber peripheral neuropathy. Physicians can biopsy the skin with a 3-mm circular punch tool and immediately fix the specimen in 2% paraformaldehyde lysine-periodate or Zamboni's fixative. Specimens are sent to a specialized laboratory for processing and analysis where the small nerve fibers are quantified by a neuropathologist to obtain a diagnostic result.
This skin punch biopsy measurement technique is called intraepidermal nerve fiber density (IENFD). The following table describes the IENFD values in males and females of a 3 mm biopsy 10-cm above the lateral malleolus (above ankle outer side of leg). Any value measured below the 0.05 Quantile IENFD values per age span, is considered a reliable positive diagnosis for Small Fiber Peripheral Neuropathy.
Oral retinoids have proven effective in treating this disorder. Depending on the side effects they may improve the quality of life. Examples are etretinate, acitretin, isotretinoin
The diagnosis of small fiber neuropathy often requires ancillary testing. Nerve conduction studies and electromyography are commonly used to evaluate large myelinated sensory and motor nerve fibers, but are ineffective in diagnosing small fiber neuropathies.
Quantitative sensory testing (QST) assesses small fiber function by measuring temperature and vibratory sensation. Abnormal QST results can be attributed to dysfunction in the central nervous system. Furthermore, QST is limited by a patient’s subjective experience of pain sensation. Quantitative sudomotor axon reflex testing (QSART) measures sweating response at local body sites to evaluate the small nerve fibers that innervate sweat glands.
People with POTS will show a marked rise in heart rate within 10 minutes of standing or being tilted 60° head-up on a tilt table, without a corresponding decrease in blood pressure. A variety of autonomic tests are employed to exclude autonomic disorders that could underlie symptoms, while endocrine testing is used to exclude hyperthyroidism and rarer endocrine conditions. Electrocardiography is normally performed on all patients to exclude other possible causes of tachycardia. In cases where a particular associated condition or complicating factor are suspected, other non-autonomic tests may be used: echocardiography to exclude mitral valve prolapse, and thermal threshold tests for small-fiber neuropathy.
Testing the cardiovascular response to prolonged head-up tilting, exercise, eating, and heat stress may help determine the best strategy for managing symptoms. POTS has also been divided into several types (see § Causes), which may benefit from distinct treatments. People with neuropathic POTS show a loss of sweating in the feet during sweat tests, as well as impaired norepinephrine release in the leg, but not arm. This is believed to reflect peripheral sympathetic denervation in the lower limbs. People with hyperadrenergic POTS show a marked increase of blood pressure and norepinephrine levels when standing, and are more likely to suffer from prominent palpitations, anxiety, and tachycardia.