Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
Congenital anomalies resulted in about 632,000 deaths per year in 2013 down from 751,000 in 1990. The type with the greatest death are congenital heart disease (323,000), followed by neural tube defects (69,000).
Many studies have found that the frequency of occurrence of certain congenital malformations depends on the sex of the child (table). For example, pyloric stenosis occurs more often in males while congenital hip dislocation is four to five times more likely to occur in females. Among children with one kidney, there are approximately twice as many males, whereas among children with three kidneys there are approximately 2.5 times more females. The same pattern is observed among infants with excessive number of ribs, vertebrae, teeth and other organs which in a process of evolution have undergone reduction—among them there are more females. Contrarily, among the infants with their scarcity, there are more males. Anencephaly is shown to occur approximately twice as frequently in females. The number of boys born with 6 fingers is two times higher than the number of girls. Now various techniques are available to detect congenital anomalies in fetus before birth.
About 3% of newborns have a "major physical anomaly", meaning a physical anomaly that has cosmetic or functional significance.
Physical congenital abnormalities are the leading cause of infant mortality in the United States, accounting for more than 20% of all infant deaths. Seven to ten percent of all children will require extensive medical care to diagnose or treat a birth defect.
- Data obtained on opposite-sex twins. ** — Data were obtained in the period 1983–1994.
P. M. Rajewski and A. L. Sherman (1976) have analyzed the frequency of congenital anomalies in relation to the system of the organism. Prevalence of men was recorded for the anomalies of phylogenetically younger organs and systems.
In respect of an etiology, sexual distinctions can be divided on appearing before and after differentiation of male's gonads in during embryonic development, which begins from eighteenth week. The testosterone level in male embryos thus raises considerably. The subsequent hormonal and physiological distinctions of male and female embryos can explain some sexual differences in frequency of congenital defects. It is difficult to explain the observed differences in the frequency of birth defects between the sexes by the details of the reproductive functions or the influence of environmental and social factors.
Although significant progress has been made in identifying the etiology of some birth defects, approximately 65% have no known or identifiable cause. These are referred to as sporadic, a term that implies an unknown cause, random occurrence regardless of maternal living conditions, and a low recurrence risk for future children. For 20-25% of anomalies there seems to be a "multifactorial" cause, meaning a complex interaction of multiple minor genetic anomalies with environmental risk factors. Another 10–13% of anomalies have a purely environmental cause (e.g. infections, illness, or drug abuse in the mother). Only 12–25% of anomalies have a purely genetic cause. Of these, the majority are chromosomal anomalies.
ONH is diagnosed by ophthalmoscopic examination. Patients with ONH exhibit an optic nerve that appears smaller than normal and different in appearance from small optic nerves caused by other eye conditions such as optic (nerve) atrophy.
DM:DD ratio has proven to be a clinically useful measurement to help diagnose optic nerve hypoplasia. Where "DM" represents the distance from Disk to Macula, and "DD" represents Disc Diameter.
The mean disc diameter (DD) is (Vertical diameter of Disc+Horizontal diameter of Disc)divided by 2. The distance between the center of the disc and the macula is DM.
"Interpretation:" When the ratio of DM to DD is greater than 3, ONH is suspected, and when it is greater than 4, Optic Nerve Hypoplasia is definite.
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
The visual prognosis in optic nerve hypoplasia is quite variable. Occasionally, optic nerve hypoplasia may be compatible with near-normal vision; in other cases, one or both eyes may be functionally, or legally blind. Although most patients with only optic nerve involvement lead normally productive lives, those with accompanying endocrine dysfunction or other midline cerebral abnormalities are more at risk for on-going intellectual and other disabilities.
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below:
In the developed world, nearly all cases of congenital hypothyroidism are detected by the newborn screening program. These are based on measurement of TSH or thyroxine (T) on the second or third day of life (Heel prick).
If the TSH is high, or the T low, the infant's doctor and parents are called and a referral to a pediatric endocrinologist is recommended to confirm the diagnosis and initiate treatment. Often a technetium (Tc-99m pertechnetate) thyroid scan is performed to detect a structurally abnormal gland. A radioactive iodine (RAIU) exam will help differentiate congenital absence or a defect in organification (a process necessary to make thyroid hormone).
Thyroid dysgenesis or thyroid agenesis is a cause of congenital hypothyroidism where the thyroid is missing, ectopic, or severely underdeveloped.
It should not be confused with iodine deficiency, or with other forms of congenital hypothyroidism, such as thyroid dyshormonogenesis, where the thyroid is present but not functioning correctly.
Congenital hypothyroidism caused by thyroid dysgenesis can be associated with PAX8.
An "ectopic thyroid", also called "accessory thyroid gland", is a form of thyroid dysgenesis in which an entire or parts of the thyroid located in another part of the body than what is the usual case. A completely ectopic thyroid gland may be located anywhere along the path of the descent of the thyroid during its embryological development, although it is most commonly located at the base of the tongue, just posterior to the foramen cecum of the tongue. In this location, an aberrant or ectopic thyroid gland is known as a "lingual thyroid". If the thyroid fails to descend to even higher degree, then the resulting final resting point of the thyroid gland may be high in the neck, such as just below the hyoid bone. Parts of ectopic thyroid tissue ("accessory thyroid tissue") can also occur, and arises from remnants of the thyroglossal duct, and may appear anywhere along its original length. Accessory thyroid tissue may be functional, but is generally insufficient for normal function if the main thyroid gland is entirely removed.
Lingual thyroid is 4-7 times more common in females, with symptoms developing during puberty, pregnancy or menopause. Lingual thyroid may be asymptomatic, or give symptoms such as dysphagia (difficulty swallowing), dysphonia (difficulty talking) and dyspnea (difficulty breathing).