Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If the medical history and the actual exam of the hemangioma look typical for PHACE Syndrome, more tests are ordered to confirm the diagnosis. These tests may include:
- Ultrasound
- Magnetic resonance imaging (MRI)
- Magnetic resonance angiography of the brain (MRA)
- Echocardiogram
- Eye exam by an eye doctor
- Other tests may be needed for diagnosis and treatment
A temporal-bone CT using thin slices makes it possible to diagnose the degree of stenosis and atresia of the external auditory canal, the status of the middle ear cavity, the absent or dysplastic and rudimentary ossicles, or inner ear abnormalities such as a deficient cochlea. Two- and three-dimensional CT reconstructions with VRT and bone and skin-surfacing are helpful for more accurate staging and the three-dimensional planning of mandibular and external ear reconstructive surgery.
A few techniques are used to confirm the diagnosis in TCS.
An orthopantomogram (OPG) is a panoramic dental X-ray of the upper and lower jaw. It shows a two-dimensional image from ear to ear. Particularly, OPG facilitates an accurate postoperative follow-up and monitoring of bone growth under a mono- or double-distractor treatment. Thereby, some TCS features could be seen on OPG, but better techniques are used to include the whole spectrum of TCS abnormalities instead of showing only the jaw abnormalities.
Another method of radiographic evaluation is taking an X-ray image of the whole head. The lateral cephalometric radiograph in TCS shows hypoplasia of the facial bones, like the malar bone, mandible, and the mastoid.
Finally, occipitomental radiographs are used to detect hypoplasia or discontinuity of the zygomatic arch.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
Genetic testing may be available for mutations in the FGDY1 gene. Genetic counseling is indicated for individuals or families who may carry this condition, as there are overlapping features with fetal alcohol syndrome.
Other examinations or tests can help with diagnosis. These can include:
detailed family history
- conducting a detailed physical examination to document morphological features
- testing for genetic defect in FGDY1
- x-rays can identify skeletal abnormalities
- echo cardiogram can screen for heart abnormalities
- CT scan of the brain for cystic development
- X-ray of the teeth
- Ultrasound of abdomen to identify undescended testis
The diagnosis of Jackson–Weiss syndrome is done via the following:
- Genetic testing
- Clinical presentation
The DDx for this condition includes metopic synostosis, as well as Lambdoida synostosis.
The diagnosis is usually based on clinical features present at birth.
Ultrasound in the second trimester may show abnormalities associates with NLS, including polyhydramnios, intrauterine growth restriction, microcephaly, proptosis and decreased fetal motility.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
MRI imaging can be used to detect whether the abducens nerve is present.
A clinical diagnosis of SCS can be verified by testing the TWIST1 gene (only gene in which mutations are known to cause SCS) for mutations using DNA analysis, such as sequence analysis, deletion/duplication analysis, and cytogenetics/ FISH analysis. Sequence analysis of exon 1 (TWIST1 coding region) provides a good method for detecting the frequency of mutations in the TWIST1 gene. These mutations include nonsense, missense, splice site mutation, and intragenic deletions/insertions. Deletion/duplication analysis identifies mutations in the TWIST1 gene that are not readily detected by sequence analysis. Common methods include PCR, multiplex ligation-dependent probe amplification (MLPA), and chromosomal microarray (CMA). Cytogenetic/FISH analysis attaches fluorescently labels DNA markers to a denatured chromosome and is then examined under fluorescent lighting, which reveals mutations caused by translocations or inversions involving 7p21. Occasionally, individuals with SCS have a chromosome translocation, inversion, or ring chromosome 7 involving 7p21 resulting in atypical findings, such as, increased developmental delay. Individuals with SCS, typically have normal brain functioning and rarely have mental impairments. For this reason, if an individual has both SCS and mental retardation, then they should have their TWIST1 gene screened more carefully because this is not a normal trait of SCS. Cytogenetic testing and direct gene testing can also be used to study gene/chromosome defects. Cytogenetic testing is the study of chromosomes to detect gains or losses of chromosomes or chromosome segments using fluorescent in situ hybridization (FISH) and/or comparative genomic hybridization (CGH). Direct gene testing uses blood, hair, skin, amniotic fluid, or other tissues in order to find genetic disorders. Direct gene testing can determine whether an individual has SCS by testing the individual's blood for mutations in the TWIST1 gene.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
It is suggested that the diagnostic criteria for Malpuech syndrome should include cleft lip and/or palate, typical associated facial features, and at least two of the following: urogenital anomalies, caudal appendage, and growth or developmental delay.
Due to the relatively high rate of hearing impairment found with the disorder, it too may be considered in the diagnosis. Another congenital disorder, Wolf-Hirschhorn (Pitt-Rogers-Danks) syndrome, shares Malpuech features in its diagnostic criteria. Because of this lacking differentiation, karyotyping (microscopic analysis of the chromosomes of an individual) can be employed to distinguish the two. Whereas deletions in the short arm of chromosome 4 would be revealed with Wolf-Hirschhorn, a karyotype without this aberration present would favor a Malpuech syndrome diagnosis. Also, the karyotype of an individual with Malpuech syndrome alone will be normal.
Up until recently, experts frequently disagreed on whether a patient had SCS, Crouzon syndrome, isolated craniosynostosis, or some other disease because the symptoms are so closely related, they literally had no way of differentiating between all of them. However, we now have direct gene testing, which allows for a more definitive diagnosis because it allows them to be differentiated from each other based on which gene is mutated in each condition. The following is a list of conditions commonly confused/misdiagnosed for SCS, some of their symptoms, and which mutated gene each contains:
The presence of the disease can be confirmed with a genetic test. In a study of 10 infants with clinical indications of NSML prior to their first birthday, 8 (80%) patients were confirmed to have the suspected mutation. An additional patient with the suspected mutation was subsequently found to have NF1, following evaluation of the mother.
There are 5 identified allelic variants responsible for NSML. Y279C, T468M, A461T, G464A, and Q510P which seems to be a unique familial mutation, in that all other variants are caused by transition errors, rather than transversion.
FHS shares some common features with Rubinstein–Taybi (due to overlapping effects of mutations on SRCAP), however cranial and hand anomalies are distinctive: broad thumbs, narrow palate, and microcephaly are absent in Floating-Harbor Syndrome. One child in the UK has a diagnosis of microcephaly alongside Floating–Harbor syndrome.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Until recently, doctors have diagnosed patients with FHS based on clinical observations and how well they fit the disease description, usually occurring in early childhood. Molecular genetic testing is also used now to test for genetic mutations. By performing a sequence analysis test of select exons, mutations can be detected in exon 34 of the SRCAP gene. This mutation has been observed in 19 patients to date.
In most cases, if the patient shows classic facial features of FHS, the molecular testing will show a mutation on the SRCAP gene.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
The only treatment for MWS is only symptomatic, with multidisciplinary management
The diagnosis of Perlman syndrome is based on observed phenotypic features and confirmed by histological examination of the kidneys. Prenatal diagnosis is possible for families that have a genetic disposition for Perlman syndrome although there is no conclusive laboratory test to confirm the diagnosis. Fetal overgrowth, particularly with an occipitofrontal circumference (OFC) greater than the 90th centile for gestational age, as well as an excess of amniotic fluid in the amniotic sac (polyhydramnios), may be the first signs of Perlman. Using ultrasound diagnosis, Perlman syndrome has been detected at 18 weeks. During the first trimester, the common abnormalities of the syndrome observed by ultrasound include cystic hygroma and a thickened nuchal lucency. Common findings for the second and third trimesters include macrosomia, enlarged kidneys, renal tumors (both hamartoma and Wilms), cardiac abnormalities and visceromegaly.
Prompt recognition and identification of the disorder along with accurate follow-up and clinical assistance is recommended as the prognosis for Perlman is severe and associated with a high neonatal death rate.
Kabuki syndrome can be diagnosed using whole exome or whole genome sequencing. Some patients who were initially clinically diagnosed with Kabuki syndrome were actually found to have Wiedemann-Steiner syndrome.
While no cure for MDS is available yet, many complications associated with this condition can be treated, and a great deal can be done to support or compensate for functional disabilities. Because of the diversity of the symptoms, it can be necessary to see a number of different specialists and undergo various examinations, including:
- Developmental evaluation
- Cardiologists evaluation
- Otolaryngology
- Treatment of seizures
- Urologic evaluation
- Genetic counseling-balanced chromosomal translocation should be excluded in a parents with an affected child are planning another pregnancy, so parents with affected children should visit a genetic counselor.