Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many conditions are associated with dizziness. Dizziness can accompany certain serious events, such as a concussion or brain bleed, epilepsy and seizures (convulsions), strokes, and cases of meningitis and encephalitis. However, the most common subcategories can be broken down as follows: 40% peripheral vestibular dysfunction, 10% central nervous system lesion, 15% psychiatric disorder, 25% presyncope/disequilibrium, and 10% nonspecific dizziness. Some vestibular pathologies have symptoms that are comorbid with mental disorders. The medical conditions that often have dizziness as a symptom include:
- Benign paroxysmal positional vertigo
- Meniere's disease
- Vestibular neuronitis
- Labyrinthitis
- Otitis media
- Brain tumor
- Acoustic neuroma
- Motion sickness
- Ramsay Hunt syndrome
- Migraine
- Multiple sclerosis
- Pregnancy
- low blood pressure (hypotension)
- low blood oxygen content (hypoxemia)
- heart attack
- iron deficiency (anemia)
- low blood sugar (hypoglycemia)
- hormonal changes (e.g. thyroid disease, menstruation, pregnancy)
- panic disorder
- hyperventilation
- anxiety
- depression
- age-diminished visual, balance, and perception of spatial orientation abilities
Dizziness is broken down into 4 main subtypes: vertigo (~50%), disequilibrium (less than ~15%), presyncope (less than ~15%) and lightheadedness (~10%).
Treatment for lightheadedness depends on the cause or underlying problem. Treatment may include drinking plenty of water or other fluids (unless the lightheadedness is the result of water intoxication in which case drinking water is quite dangerous). If a sufferer is unable to keep fluids down from nausea or vomiting, they may need intravenous fluid. Sufferers should try eating something sugary and lying down or sitting and reducing the elevation of the head relative to the body (for example, by positioning the head between the knees).
Other simple remedies include avoiding sudden changes in posture when sitting or lying and avoiding bright lights.
Several essential electrolytes are excreted when the body perspires. When people are out in unusual or extreme heat for a long time, sweating excessively can cause a lack of some electrolytes, which in turn can cause lightheadedness.
Lightheadedness is a common and typically unpleasant sensation of dizziness and/or a feeling that one may faint. The sensation of lightheadedness can be short-lived, prolonged, or, rarely, recurring. In addition to dizziness, the individual may feel as though his or her head is weightless. The individual may also feel as though the room is what causes the "spinning" or moving (vertigo) associated with lightheadedness. Most causes of lightheadedness are not serious and either cure themselves quickly, or are easily treated.
Keeping a sense of balance requires the brain to process a variety of information received from the eyes, the nervous system, and the inner ears. If the brain is unable to process these signals, such as when the messages are contradictory, or if the sensory systems are improperly functioning, an individual may experience lightheadedness or dizziness.
The diagnosis of heat syncope is done during a physical examination. During the physical exam the practitioner will test the blood pressure of the patient, and the pulse. If the patient is experiencing heat syncope the blood pressure will be low, and the pulse will be elevated. Observation of excess sweating will also be a key sign. Finally, the practitioner will ask questions figuring out the history of the patient's symptoms. If the patient developed symptoms while engaging in physical activity and high temperatures it will then be a true case of heat syncope.
MAV is not recognized as a distinct diagnostic entity. Lembert and Neuhauser propose criteria for definite and probable migraine-associated vertigo.
A diagnosis of "definite migraine-associated vertigo" includes a case history of:
- episodic vestibular symptoms of at least moderate severity;
- current or previous history of migraine according to the 2004 "International Classification of Headache Disorders";
- one of the following migrainous symptoms during two or more attacks of vertigo: migrainous headache, photophobia, phonophobia, visual or other auras; and
- other causes ruled out by appropriate investigations.
A diagnosis of "probable migraine-associated vertigo" includes a case history of episodic vestibular symptoms of at least moderate severity and one of the following:
- current or previous history of migraine according to the 2004 "International Classification of Headache Disorders";
- migrainous symptoms during vestibular symptoms;
- migraine precipitants of vertigo in more than 50% of attacks, such as food triggers, sleep irregularities, or hormonal change;
- response to migraine medications in more than 50% of attacks; and
- other causes ruled out by appropriate investigations.
Note that, in both of the above criteria, headache is not required to make the diagnosis of migraine-associated vertigo.
They add that, in patients with a clear-cut history, no vestibular tests are required. Other historical criteria which are helpful in making the diagnosis of migraine-associated vertigo are vertiginous symptoms throughout the patient’s entire life, a long history of motion intolerance, sensitivity to environmental stimuli, illusions of motion of the environment, and vertigo that awakens the patient.
The basic treatment for heat syncope is like that for other types of fainting: the patient is positioned in a seating or supine position with legs raised. Water containing salt, or another drink containing electrolytes, is administered slowly, and the patient is moved to a cooler area, such as the shade.
The affected person should rest and recover, because heat syncope can lead to heat stroke or heat exhaustion.
Treatment of migraine-associated vertigo is the same as the treatment for migraine in general.
Tests for vertigo often attempt to elicit nystagmus and to differentiate vertigo from other causes of dizziness such as presyncope, hyperventilation syndrome, disequilibrium, or psychiatric causes of lightheadedness. Tests of vestibular system (balance) function include: electronystagmography (ENG), Dix-Hallpike maneuver, rotation tests, head-thrust test, caloric reflex test, and computerized dynamic posturography (CDP).
The HINTS test, which is a combination of three physical exam tests that may be performed by physicians at the bedside has been deemed helpful in differentiating between central and peripheral causes of vertigo. The HINTS test involves: the horizontal head impulse test, observation of nystagmus on primary gaze, and the test of skew. CT scans or MRIs are sometimes used by physicians when diagnosing vertigo.
Tests of auditory system (hearing) function include pure tone audiometry, speech audiometry, acoustic reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and the auditory brainstem response test.
A number of specific conditions can cause vertigo. In the elderly, however, the condition is often multifactorial.
A recent history of underwater diving can indicate possibility of barotrauma or decompression sickness involvement, but does not exclude all other possibilities. The dive profile (which is frequently recorded by dive computer) can be useful to assess a probability for decompression sickness, which can be confirmed by therapeutic recompression.
Definitive treatment depends on the underlying cause of vertigo. Ménière's disease patients have a variety of treatment options to consider when receiving treatment for vertigo and tinnitus including: a low-salt diet and intratympanic injections of the antibiotic gentamicin or surgical measures such as a shunt or ablation of the labyrinth in refractory cases.
Common drug treatment options for vertigo may include the following:
- Anticholinergics such as hyoscine hydrobromide (scopolamine)
- Anticonvulsants such as topiramate or valproic acid for vestibular migraines
- Antihistamines such as betahistine, dimenhydrinate, or meclizine, which may have antiemetic properties
- Beta blockers such as metoprolol for vestibular migraine
- Corticosteroids such as methylprednisolone for inflammatory conditions such as vestibular neuritis or dexamethasone as a second-line agent for Ménière's disease
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Several treatments may be necessary, and treatment will generally be repeated until either all symptoms resolve, or no further improvement is apparent.
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.
Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).
Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).
The difficulty of making the right vestibular diagnosis is reflected in the fact that in some populations, more than one third of the patients with a vestibular disease consult more than one physician – in some cases up to more than fifteen.
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions—including ear infections, blood pressure changes, and some vision problems—and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.
The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient's symptoms and health status. Because there are so many variables, not all patients will require every test.
If a person with heat exhaustion gets medical treatment, Emergency Medical Technicians (EMTs) or doctors and/or nurses may also:
- Give them supplemental oxygen
- Give them intravenous fluids and electrolytes if they are too confused to drink and/or are vomiting
A typical method for determining the effects of the sopite syndrome is through the use of one or several questionnaires. The available questionnaires for motion sickness and sopite syndrome are described by Lawson. Two such questionnaires widely used to evaluate motion sickness are the Pensacola Diagnostic Index and the Motion Sickness Questionnaire. These questionnaires are limited, however, in that they group symptoms of drowsiness with other non-sopite related effects, such as nausea and dizziness. Motion sickness is measured based on the cumulative ratings of all these symptoms without distinguishing different levels for each effect.
A Motion Sickness Assessment Questionnaire has been developed to test the multiple dimensions of motion sickness more thoroughly; this survey defines motion sickness as gastrointestinal (involving nausea), peripheral (referring to thermoregulatory effects such as clamminess and sweating), central (involving symptoms such as dizziness and lightheadedness), and sopite-related. This questionnaire may more accurately determine how subjects experience sopite symptoms relative to other motion sickness effects. Another questionnaire designed to measure sleepiness is the Epworth Sleepiness Scale.
First aid for heat exhaustion includes:
- Moving the person to a cool place
- Having the patient take off extra layers of clothes
- Cooling the patient down by fanning them and putting wet towels on their body
- Having them lie down and put their feet up if they are feeling dizzy
- Having them drink water or sports drinks – but only if they are awake, not confused nor vomiting
- Turning the person on their side if they are vomiting
The diagnostic criteria as of 2015 define definite MD and probable MD as follows:
Definite
1. Two or more spontaneous episodes of vertigo, each lasting 20 minutes to 12 hours
2. Audiometrically documented low- to medium-frequency sensorineural hearing loss in the affected ear on at least 1 occasion before, during, or after one of the episodes of vertigo
3. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the affected ear
4. Not better accounted for by another vestibular diagnosis
Probable
1. Two or more episodes of vertigo or dizziness, each lasting 20 minutes to 24 hours
2. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the reported ear
3. Not better accounted for by another vestibular diagnosis
A common and important symptom of MD is hypersensitivity to sounds. This hypersensitivity is easily diagnosed by measuring the loudness discomfort levels (LDLs).
Symptoms of MD overlap with migraine-associated vertigo (MAV) in many ways, but when hearing loss develops in MAV is usually in both ears, and this is rare in MD, and hearing loss generally does not progress in MAV as it does in MD.
People who have had a transient ischemic attack (TIA) and stroke can present with symptoms similar to MD, and in people at risk for stroke magnetic resonance imaging (MRI) should be conducted to exclude TIA or stroke, and as TIA is often a precursor to stroke, that risk should be managed.
Other vestibular conditions that should be excluded include vestibular paroxysmia, recurrent unilateral vestibulopathy, vestibular schwannoma, or a tumor of the endolymphatic sac.
Hyperventilation syndrome is a remarkably common cause of dizziness complaints. About 25% of patients who complain about dizziness are diagnosed with HVS.
A diagnostic Nijmegen Questionnaire provides an accurate diagnosis of Hyperventilation.
From 3% to 11% of diagnosed dizziness in neuro-otological clinics are due to Meniere's. The annual incidence rate is estimated to be about 15/100,000 and the prevalence rate is about 218/100,000, and around 15% of people with Meniere's disease are older than 65. In around 9% of cases a relative also had MD, signalling that there may be a genetic predisposition in some cases.
The odds of MD are greater for people of white ethnicity, with severe obesity, and women. Several conditions are often comorbid with MD, including arthritis, psoriasis, gastroesophageal reflux disease, irritable bowel syndrome, and migraine.
The treatment for vestibular neuronitis depends on the cause. However, symptoms of vertigo can be treated in the same way as other vestibular dysfunctions with vestibular rehabilitation.
Benign paroxysmal vertigo of childhood is an uncommon neurological disorder which presents with recurrent episodes of dizziness. The presentation is usually between the ages of 2 years and 7 years of age and is characterised by short episodes of vertigo of sudden onset when the child appears distressed and unwell. The child may cling to something or someone for support. The episode lasts only minutes and resolves suddenly and completely. It is a self-limiting condition and usually resolves after about eighteen months, although many go on to experience migrainous vertigo (or vertiginous migraine) when older.
Benign paroxysmal vertigo of childhood is a migrainous phenomenon with more than 50% of those affected having a family history of migraines affecting a first-degree relative. It has no relationship to benign paroxysmal positional vertigo which is a different condition entirely.
Vestibular neuronitis is generally a self-limiting disease. Treatment with drugs is neither necessary nor possible. The effect of glucocorticoids has been studied, but they have not been found to significantly affect long-term outcome.
Symptomatic treatment with antihistaminics such as cinnarizine, however, can be used to suppress the symptoms of vestibular neuronitis while it spontaneously regresses. Prochlorperazine is another commonly prescribed medication to help alleviate the symptoms of vertigo and nausea.
Studies have shown that older adults with dementia who take antipsychotics (medications for mental illness) such as prochlorperazine have an increased chance of death during treatment.
The sopite syndrome may be difficult to test due to the nature of the symptoms. Indicators such as drowsiness, mood changes, and apathy must be observed and graded objectively. Therefore, many of the results obtained from studies of the sopite syndrome are not sufficiently repeatable for the purposes of scientific writing.
There is insufficient evidence for or against breathing exercises.
While traditional intervention for an acute episode has been to have the patient breathe into a paper bag, causing rebreathing and restoration of CO₂ levels, this is not advised. The same benefits can be obtained more safely from deliberately slowing down the breathing rate by counting or looking at the second hand on a watch. This is sometimes referred to as "7-11 breathing", because a gentle inhalation is stretched out to take 7 seconds (or counts), and the exhalation is slowed to take 11 seconds. This in-/exhalation ratio can be safely decreased to 4-12 or even 4-20 and more, as the O₂ content of the blood will easily sustain normal cell function for several minutes at rest when normal blood acidity has been restored.
It has also been suggested that breathing therapies such as the Buteyko Breathing method may be effective in reducing the symptoms and recurrence of the syndrome.
Benzodiazepines can be prescribed to reduce stress that provokes hyperventilation syndrome. Selective serotonin reuptake inhibitors (SSRIs) can reduce the severity and frequency of hyperventilation episodes.
Mild disease can be treated with fluids by mouth. In more significant disease spraying with mist and using a fan is useful. For those with severe disease putting them in lukewarm water is recommended if possible with transport to a hospital.
Prevention includes avoiding medications that can increase the risk of heat illness (e.g. antihypertensives, diuretics, and anticholinergics), gradual adjustment to heat, and sufficient fluids and electrolytes.