Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Genetic tests, including prenatal testing, are available for both confirmed forms. Molecular testing is considered the gold standard of diagnosis.
Testing at pregnancy to determine whether an unborn child is affected is possible if genetic testing in a family has identified a DMPK mutation. This can be done at 10–12 weeks gestation by a procedure called chorionic villus sampling (CVS) that involves removing a tiny piece of the placenta and analyzing DNA from its cells. It can also be done by amniocentesis after 14 weeks gestation by removing a small amount of the amniotic fluid surrounding the baby and analyzing the cells in the fluid. Each of these procedures has a small risk of miscarriage associated with it and those who are interested in learning more should check with their doctor or genetic counselor.
There is also another procedure called preimplantation diagnosis that allows a couple to have a child that is unaffected with the genetic condition in their family. This procedure is experimental and not widely available. Those interested in learning more about this procedure should check with their doctor or genetic counselor.
It is possible to test someone who is at risk for developing DM1 before they are showing symptoms to see whether they inherited an expanded trinucleotide repeat. This is called predictive testing. Predictive testing cannot determine the age of onset that someone will begin to have symptoms, or the course of the disease. If the child is not having symptoms, the testing is not possible with an exception of emancipated minors as a policy.
Electrodiagnostic testing (also called electrophysiologic) includes nerve conduction studies which involves stimulating a peripheral motor or sensory nerve and recording the response, and needle electromyography, where a thin needle or pin-like electrode is inserted into the muscle tissue to look for abnormal electrical activity.
Electrodiagnostic testing can help distinguish myopathies from neuropathies, which can help determine the course of further work-up. Most of the electrodiagnostic abnormalities seen in myopathies are also seen in neuropathies (nerve disorders). Electrodiagnostic abnormalities common to myopathies and neuropathies include; abnormal spontaneous activity (e.g., fibrillations, positive sharp waves, etc.) on needle EMG and, small amplitudes of the motor responses compound muscle action potential, or CMAP during nerve conduction studies. Many neuropathies, however, cause abnormalities of sensory nerve studies, whereas myopathies involve only the muscle, with normal sensory nerves. The most important factor distinguishing a myopathy from a neuropathy on needle EMG is the careful analysis of the motor unit action potential (MUAP) size, shape, and recruitment pattern.
There is substantial overlap between the electrodiagnostic findings the various types of myopathy. Thus, electrodiagnostic testing can help distinguish neuropathy from myopathy, but is not effective at distinguishing which specific myopathy is present, here muscle biopsy and perhaps subsequent genetic testing are required.
The diagnosis of oculopharyngeal muscular dystrophy can be done via two methods, a muscle biopsy or a blood draw with genetic testing for GCG trinucleotide expansions in the PABPN1 gene. The genetic blood testing is more common.Additionally, a distinction between OPMD and myasthenia gravis or mitochondrial myopathy must be made, in regards to the differential diagnosis of this condition.
There are rarely any specific tests for the congenital myopathies except for muscle biopsy. Tests can be run to check creatine kinase in the blood, which is often normal or mildly elevated in congenital myopathies. Electromyography can be run to check the electrical activity of the muscle. Diagnosis heavily relies on muscle pathology, where a muscle biopsy is visualised on the cellular level. Diagnosis usually relies on this method, as creatine kinase levels and electromyography can be unreliable and non-specific. Since congenital myopathies are genetic, there have been advancements in prenatal screenings.
On examination of muscle biopsy material, the nuclear material is located predominantly in the center of the muscle cells, and is described as having any "myotubular" or "centronuclear" appearance. In terms of describing the muscle biopsy itself, "myotubular" or "centronuclear” are almost synonymous, and both terms point to the similar cellular-appearance among MTM and CNM. Thus, pathologists and treating physicians use those terms almost interchangeably, although researchers and clinicians are increasingly distinguishing between those phrases.
In general, a clinical myopathy and a muscle biopsy showing a centronuclear (nucleus in the center of the muscle cell) appearance would indicate a centronuclear myopathy (CNM). The most commonly diagnosed CNM is myotubular myopathy (MTM). However, muscle biopsy analysis alone cannot reliably distinguish myotubular myopathy from other forms of centronuclear myopathies, and thus genetic testing is required.
Diagnostic workup is often coordinated by a treating neurologist. In the United States, care is often coordinated through clinics affiliated with the Muscular Dystrophy Association.
The most useful information for accurate diagnosis is the symptoms and weakness pattern. If the quadriceps are spared but the hamstrings and iliopsoas are severely affected in a person between ages of 20 - 40, it is very likely HIBM will be at the top of the differential diagnosis. The doctor may order any or all of the following tests to ascertain if a person has IBM2:
- Blood test for serum Creatine Kinase (CK or CPK);
- Nerve Conduction Study (NCS) / Electomyography (EMG);
- Muscle Biopsy;
- Magnetic Resonance Imaging (MRI) or Computer Tomography (CT) Scan to determine true sparing of quadriceps;
- Blood Test or Buccal swab for genetic testing;
The conditions included under the term "congenital myopathy" can vary. One source includes nemaline myopathy, myotubular myopathy, central core myopathy, congenital fiber type disproportion, and multicore myopathy. The term can also be used more broadly, to describe conditions present from birth.
There is no specific treatment but triggering anesthetics are avoided and relatives are screened for "RYR1" mutations as these may make them susceptible to MH.
The diagnosis is made on the combination of typical symptoms and the appearance on biopsy (tissue sample) from muscle. The name derives from the typical appearance of the biopsy on light microscopy, where the muscle cells have cores that are devoid of mitochondria and specific enzymes.
Respiratory insufficiency develops in a small proportion of cases. Creatine kinase and electromyography (EMG) tend to be normal.
A diagnostic test for statin-associated auto-immune necrotizing myopathy will be available soon in order to differentiate between different types of myopathies during diagnosis. The presence of abnormal spontaneous electrical activity in the resting muscles indicates an irritable myopathy and is postulated to reflect the presence of an active necrotising myopathic process or unstable muscle membrane potential. However, this finding has poor sensitivity and specificity for predicting the presence of an inflammatory myopathy on biopsy. Further research into this spontaneous electrical activity will allow for a more accurate differential diagnosis between the different myopathies.
Currently a muscle biopsy remains a critical test, unless the diagnosis can be secured by genetic testing. Genetic testing is a less invasive test and if it can be improved upon that would be ideal. Molecular genetic testing is now available for many of the more common metabolic myopathies and muscular dystrophies. These tests are costly and are thus best used to confirm rather than screen for a diagnosis of a specific myopathy. Due to the cost of these tests, they are best used to confirm rather than screen for a diagnosis of a specific myopathy. It is the hope of researchers that as these testing methods improve in function, both costs and access will become more manageable
The increased study of muscle pathophysiology is of importance to researchers as it helps to better differentiate inflammatory versus non-inflammatory and to aim treatment as part of the differential diagnosis. Certainly classification schemes that better define the wide range of myopathies will help clinicians to gain a better understanding of how to think about these patients. Continued research efforts to help appreciate the pathophysiology will improve clinicians ability to administer the most appropriate therapy based on the particular variety of myopathy.
The mechanism for myopathy in individuals with low vitamin D is not completely understood. A decreased availability of 250HD leads to mishandling of cellular calcium transport to the sarcoplasmic reticulum and mitochondria, and is associated with reduced actomyosin content of myofibrils.
Currently no cure or specific treatment exists to eliminate the symptoms or stop the disease progression. A consistent diet planned with the help of a dietitian along with exercises taught by a speech therapist can assist with mild symptoms of dysphagia. Surgical intervention can also help temporarily manage symptoms related to the ptosis and dysphagia. Cutting one of the throat muscles internally, an operation called cricopharyngeal myotomy, can be one way to ease symptoms in more severe cases.
Physical therapy and specifically designed exercises may assist with proximal limb weakness, though there is still no current definitive data showing it will stop the progress of the disease. Many of those affected with the proximal limb weakness will eventually require assistive devices such as a wheelchair. As with all surgical procedures, they come with many risk factors. As the dysphagia becomes more severe, patients become malnourished, lose significant weight, become dehydrated and suffer from repeated incidents of aspiration pneumonia. These last two are often the cause of death.
The diagnosis for DMSA1 is usually masked by a diagnosis for a respiratory disorder. In infants, DMSAI is usually the cause of acute respiratory insufficiency in the first 6 months of life. The respiratory distress should be confirmed as diaphragmatic palsy by fluoroscopy or by electromyography. Although the patient may have a variety of other symptoms the diaphragmatic palsy confirmed by fluoroscopy or other means is the main criteria for diagnosis. This is usually confirmed with genetic testing looking for mutations in the "IGHMBP2" gene.
The patient can be misdiagnosed if the respiratory distress is mistaken for a severe respiratory infection or DMSA1 can be mistaken for SMA1 because their symptoms are so similar but the genes which are affected are different. This is why genetic testing is necessary to confirm the diagnosis of DMSA.
At present, Nemaline myopathy does not have a cure. Nemaline myopathy is a very rare disease that only effects 1 out of 50,000 on average, although recent studies show that this number is even smaller. There are a number of treatments to minimize the symptoms of the disease. The treatments and procedures to help patients with nemaline myopathy vary depending on the severity of the disease. A possible accommodation could be the use of a stabilizer, such as a brace. Other means include moderate stretching and moderate exercise to help target muscles maintain maximum health.
As people with NM grow and develop throughout their lives, it is important for them to see a variety of health professionals regularly, including a neurologist, physical therapist, and others, such as speech therapists and psychologists, to help both the patient and family adjust to everyday life.
Prognosis strongly depends on which subtype of disease it is. Some are deadly in infancy but most are late onset and mostly manageable.
During vigorous ischemic exercise, skeletal muscle functions aerobically, generating lactate and ammonia a coproduct of muscle myoadenylate deaminase (AMPD) activity. The forearm ischemic exercise test takes advantage of this physiology and has been standardized to screen for disorders of glycogen metabolism and AMPD deficiency. Patients with a glycogen storage disease manifest a normal increase in ammonia but no change from baseline of lactate, whereas in those with AMPD deficiency, lactate levels increase but ammonia levels do not. If ischemic exercise testing gives an abnormal result, enzyme analysis must be performed on muscle to confirm the putative deficiency state because false-positive results can occur.
Because different types of myopathies are caused by many different pathways, there is no single treatment for myopathy. Treatments range from treatment of the symptoms to very specific cause-targeting treatments. Drug therapy, physical therapy, bracing for support, surgery, and massage are all current treatments for a variety of myopathies.
A 2009 review noted that muscle weakness usually begins after age 20 and after 20–30 years, the person usually requires a wheel chair for mobility. There was no mention of increased mortality.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
While the presence of several symptoms may point towards a particular genetic disorder of the spinal muscular atrophy group, the actual disease can be established with full certainty only by genetic testing which detects the underlying genetic mutation.
There is currently no cure for the disease but treatments to help the symptoms are available.
Although no cure currently exists, there is hope in treatment for this class of hereditary diseases with the use of an embryonic mitochondrial transplant.
Distal muscular dystrophy (or distal myopathy) is a group of disorders characterized by onset in the hands or feet. Many types involve dysferlin, but it has been suggested that not all cases do.
Types include:
DYSF is also associated with limb-girdle muscular dystrophy type 2B.
Distal muscular dystrophy is a type of muscular dystrophy that affects the muscles of the extremities, the hands, feet, lower arms, or lower legs. The cause of this dystrophy is very hard to determine because it can be a mutation in any of at least eight genes and not all are known yet. These mutations can be inherited from one parent, autosomal dominant, or from both parents, autosomal recessive. Along with being able to inherit the mutated gene, distal muscular dystrophy has slow progress therefore the patient may not know that they have it until they are in their late 40’s or 50’s. There are eight known types of distal muscular dystrophy. They are Welander’s distal myopathy, Finnish (tibial) distal myopathy, Miyoshi distal myopathy, Nonaka distal myopathy, Gowers–Laing distal myopathy, hereditary inclusion-body myositis type 1, distal myopathy with vocal cord and pharyngeal weakness, and ZASP-related myopathy. All of these affect different regions of the extremities and can show up as early as 5 years of age to as late as 50 years old. Doctors are still trying to determine what causes these mutations along with effective treatments.
Since December 2016, autosomal recessive proximal spinal muscular atrophy can be treated with nusinersen. No cure is known to any of the remaining disorders of the spinal muscular atrophies group. The main objective there is to improve quality of life which can be measured using specific questionnaires. Supportive therapies are widely employed for patients who often also require comprehensive medical care involving multiple disciplines, including pulmonology, neurology, orthopedic surgery, critical care, and clinical nutrition. Various forms of physiotherapy and occupational therapy are frequently able to slow down the pace of nerve degeneration and muscle wasting. Patients also benefit greatly from the use of assistive technology.
It is important to differentiate CPEO from other pathologies that may cause an ophthalmoplegia. There are specific therapies used for these pathologies.
CPEO is diagnosed via muscle biopsy. On examination of muscle fibers stained with Gömöri trichrome stain, one can see an accumulation of enlarged mitochondria. This produces a dark red staining of the muscle fibers given the name “ragged red fibers”. While ragged red fibers are seen in normal aging, amounts in excess of normal aging give a diagnosis of a mitochondrial myopathy.
Polymerase Chain Reaction (PCR), from a sample of blood or muscle tissue can determine a mutation of the mtDNA.
Elevated acetylcholine receptor antibody level which is typically seen in myasthenia gravis has been seen in certain patients of mitochondrial associated ophthalmoplegia.
It is important to have a dilated eye exam to determine if there is pigmentary retinopathy that may signify Kearns-Sayre syndrome which is associated with cardiac abnormalities.
MRI may be helpful in the diagnosis, in one study volumes of medial rectus, lateral rectus, and inferior rectus muscles in CPEO were not smaller than normal (in contrast to the profound atrophy typical of neurogenic paralysis). Although volumes of the superior rectus muscle-levator complex and superior oblique were significantly reduced.