Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A test called the Bielschowsky Darkening Wedge Test can be used to reveal and diagnose the presence of dissociated vertical deviation, although any (or no) amount of dissociative occlusion may also prompt it to occur.
The patient is asked to look at a light. One eye is covered and a filter is placed in front of the other eye. The density or opacity of this filter is gradually increased, and the behaviour of the eye under the cover is observed not of the eye beneath the filter. Initially, if DVD is present, the covered eye will have elevated, but as the filter opacity is increased the eye under the cover will gradually move downwards. This "Bielschowsky phenomenon" is present in over 50% of persons with prominent DVD, all the more if the DVD is asymmetric and amblyopia is present as well.
The Bielschowsky phenomenon is also present in the horizontal plane in patients with prominent DHD (dissociated horizontal deviation).
Cyclotropia can be detected using subjective tests such as the Maddox rod test, the Bagolini striated lens test, the phase difference haploscope of Aulhorn, or the Lancaster red-green test (LRGT). Among these, the LRGT is the most complete. Cyclotropia can also be diagnosed using a combination of subjective and objective tests. Before surgery, both subjective and objective torsion should be assessed.
Experiments have also been made on whether cyclic deviations can be assessed by purely photographic means.
DVD is often mistaken for over-action of the inferior oblique extra-ocular muscles. DVD can be revealed on ocular movement testing when one eye is occluded by the nose on lateral gaze. This eye will then elevate, simulating an inferior oblique over action. However, in a unilateral case, overaction of the superior rectus muscle in the unaffected dominant eye, can also be a causing factor as well as causing a V pattern exophoria.
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
During an eye examination, a test such as cover testing or the Hirschberg test is used in the diagnosis and measurement of strabismus and its impact on vision. Retinal birefringence scanning can be used for screening of young children for eye misaligments.
Several classifications are made when diagnosing strabismus.
If only small amounts of torsion are present, cyclotropia may be without symptoms entirely and may not need correction, as the visual system can compensate small degrees of torsion and still achieve binocular vision ("see also:" cyclodisparity, cyclovergence). The compensation can be a motor response (visually evoked cyclovergence) or can take place during signal processing in the brain. In patients with cyclotropia of vascular origin, the condition often improves spontaneously.
Cyclotropia cannot be corrected with prism spectacles in the way other eye position disorders are corrected. (Nonetheless two Dove prisms can be employed to rotate the visual field in experimental settings.)
For cyclodeviations above 5 degrees, surgery has normally been recommended. Depending on the symptoms, the surgical correction of cyclotropia may involve a correction of an associated vertical deviation (hyper- or hypotropia), or a Harada–Ito procedure or another procedure to rotate the eye inwards, or yet another procedure to rotate it outwards. A cyclodeviation may thus be corrected at the same time with a correction of a vertical deviation (hyper- or hypotropia); cyclodeviations without any vertical deviation can be difficult to manage surgically, as the correction of the cyclodeviation may introduce a vertical deviation.
Nystagmus is very noticeable but rarely recognized. Nystagmus can be clinically investigated by using a number of non-invasive standard tests. The simplest one is the caloric reflex test, in which one ear canal is irrigated with warm or cold water or air. The temperature gradient provokes the stimulation of the horizontal semicircular canal and the consequent nystagmus.
Nystagmus is often very commonly present with Chiari malformation.
The resulting movement of the eyes may be recorded and quantified by special devices called electronystagmograph (ENG), a form of electrooculography (an electrical method of measuring eye movements using external electrodes), or even less invasive devices called videonystagmograph (VNG), a form of video-oculography (VOG) (a video-based method of measuring eye movements using external small cameras built into head masks) by an audiologist. Special swinging chairs with electrical controls can be used to induce rotatory nystagmus.
Over the past forty years, objective eye-movement-recording techniques have been applied to the study of nystagmus, and the results have led to a greater accuracy and understanding of the condition.
Orthoptists may also use an optokinetic drum, or electrooculography to assess a patient's eye movements.
Nystagmus can be caused by subsequent foveation of moving objects, pathology, sustained rotation or substance use. Nystagmus is not to be confused with other superficially similar-appearing disorders of eye movements (saccadic oscillations) such as opsoclonus or ocular flutter that are composed purely of fast-phase (saccadic) eye movements, while nystagmus is characterised by the combination of a smooth pursuit, which usually acts to take the eye off the point of regard, interspersed with the saccadic movement that serves to bring the eye back on target. Without the use of objective recording techniques, it may be very difficult to distinguish between these conditions.
In medicine, the presence of nystagmus can be benign, or it can indicate an underlying visual or neurological problem.
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
In general, strabismus can be approached and treated with a variety of procedures. Depending on the individual case, treatment options include:
- Correction of refractive errors by glasses
- Prism therapy (if tolerated, to manage diplopia)
- Patching (mainly to manage amblyopia in children and diplopia in adults)
- Botulinum toxin injection
- Surgical correction
Surgical correction of the hypertropia is desired to achieve binocularity, manage diplopia and/or correct the cosmetic defect. Steps to achieve the same depend on mechanism of the hypertropia and identification of the offending muscles causing the misalignment. Various surgical procedures have been described and should be offered after careful examination of eyes, including a detailed orthoptic examination focussing on the disturbances in ocular motility and visual status. Specialty fellowship trained pediatric ophthalmologists and strabismus surgeons are best equipped to deal with these complex procedures.
There are several methods to quantify fixation disparity. The Mallett card, the Bernell lantern slide, the Wesson Card and the Disparometer may be used. A patient's associated phoria is the amount of prism needed to reduce their fixation disparity to zero minutes of arc.
The Mallett Fixation Disparity Unit
Instrument used to measure the associated heterophoria (or compensating prism). It consists of a small central fixation letter X surrounded by two letters O, one on each side of X, the three letters being seen binocularly, and two coloured polarized vertical bars in line with the centre of the X which are seen by each eye separately. The instrument can be swung through 90° to measure any vertical fixation disparity. The associated phoria is indicated by the misalignment of the two polarized bars when the subject fixates the X through cross-polarized filters in front of the eyes. The amount of associated phoria is given by the value of the base-in or base-out prism power necessary to produce alignment and the eye. The unit can also be used to detect suppression. See Disparometer; associated heterophoria; uncompensated heterophoria.
Controversy has arisen regarding the selection and planning of surgical procedures, the timing of surgery and about what constitutes a favourable outcome.
1. Selection and planning
Some ophthalmologists, notably Ing and Helveston, favour a prescribed approach often involving multiple surgical episodes whereas others prefer to aim for full alignment of the eyes in one procedure and let the number of muscles operated upon during this procedure be determined by the size of the squint.
2. Timing and outcome
This debate relates to the technical anatomical difficulties of operating on the very young versus the possibility of an increased potential for binocularity associated with early surgery. Infants are often operated upon at the age of six to nine months of age and in some cases even earlier at three or four months of age. Some emphasize the importance of intervening early such as to keep the duration of the patient's abnormal visual experience to a minimum. Advocates of early surgery believe that those who have their surgery before the age of one are more likely to be able to use both eyes together post-operatively.
A Dutch study (ELISSS) compared early with late surgery in a prospective, controlled, non-randomized, multicenter trial and reported that:
"Children operated early had better gross stereopsis at age six as compared to children operated late. They had been operated more frequently, however, and a substantial number of children in both [originally-recruited] groups had not been operated at all."
Other studies also report better results with early surgery, notably Birch and Stager and Murray et al. but do not comment on the number of operations undertaken. A recent study on 38 children concluded that surgery for infantile esotropia is most likely to result in measureable stereopsis if patient age at alignment is not more than 16 months.
Another study found that for children with infantile esotropia early surgery decreases the risk of dissociated vertical deviation developing after surgery.
Aside the strabismus itself, there are other aspects or conditions that appear to improve after surgery or botulinum toxin eye alignment. Study outcomes have indicated that after surgery the child catches up in development of fine-motor skills (such as grasping a toy and handling a bottle) and of large-muscle skills (such as sitting, standing, and walking) in case a developmental delay was present before. Evidence also indicates that as of the age of six, strabismic children become less accepted by their peers, leaving them potentially exposed to social exclusion starting at this age unless their eye positioning is corrected by this time ("see also:" Psychosocial effects of strabismus).
Strabismus can be manifest ("-tropia") or latent ("-phoria"). A manifest deviation, or heterotropia (which may be "eso-", "exo-", "hyper-", "hypo-", "cyclotropia" or a combination of these), is present while the patient views a target binocularly, with no occlusion of either eye. The patient is unable to align the gaze of each eye to achieve fusion. A latent deviation, or heterophoria ("eso-", "exo-", "hyper-", "hypo-", "cyclophoria" or a combination of these), is only present after binocular vision has been interrupted, typically by covering one eye. This type of patient can typically maintain fusion despite the misalignment that occurs when the positioning system is relaxed. Intermittent strabismus is a combination of both of these types, where the patient can achieve fusion, but occasionally or frequently falters to the point of a manifest deviation.
The prognosis for each patient with esotropia will depend upon the origin and classification of their condition. However, in general, management will take the following course:
1. Identify and treat any underlying systemic condition.
2. Prescribe any glasses required and allow the patient time to 'settle into' them.
3. Use occlusion to treat any amblyopia present and encourage alternation.
4. Where appropriate, orthoptic exercises can be used to attempt to restore binocularity.
5. Where appropriate, prismatic correction can be used, either temporarily or permanently, to relieve symptoms of double vision.
6. In specific cases, and primarily in adult patients, botulinum toxin can be used either as a permanent therapeutic approach, or as a temporary measure to prevent contracture of muscles prior to surgery
7. Where necessary, extra-ocular muscle surgery can be undertaken to improve cosmesis and, on occasion, restore binocularity.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
A number of tests are used during eye examinations to determine the presence of astigmatism and to quantify its amount and axis. A Snellen chart or other eye charts may initially reveal reduced visual acuity. A keratometer may be used to measure the curvature of the steepest and flattest meridians in the cornea's front surface. Corneal topography may also be used to obtain a more accurate representation of the cornea's shape. An autorefractor or retinoscopy may provide an objective estimate of the eye's refractive error and the use of Jackson cross cylinders in a phoropter or trial frame may be used to subjectively refine those measurements. An alternative technique with the phoropter requires the use of a "clock dial" or "sunburst" chart to determine the astigmatic axis and power. A keratometer may also be used to estimate astigmatism by finding the difference in power between the two primary meridians of the cornea. Javal's rule can then be used to compute the estimate of astigmatism.
A method of astigmatism analysis by Alpins may be used to determine both how much surgical change of the cornea is needed and after surgery to determine how close treatment was to the goal.
Another rarely used refraction technique involves the use of a stenopaeic slit (a thin slit aperture) where the refraction is determined in specific meridians – this technique is particularly useful in cases where the patient has a high degree of astigmatism or in refracting patients with irregular astigmatism.
There are three primary types of astigmatism: myopic astigmatism, hyperopic astigmatism, and mixed astigmatism.
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Differential diagnosis is rarely difficult in adults. Onset is typically sudden with symptoms of horizontal diplopia. Limitations of eye movements are confined to abduction of the affected eye (or abduction of both eyes if bilateral) and the size of the resulting convergent squint or esotropia is always larger on distance fixation - where the lateral rectii are more active - than on near fixation - where the medial rectii are dominant. Abduction limitations which mimic VIth nerve palsy may result secondary to surgery, to trauma or as a result of other conditions such as myasthenia gravis or thyroid eye disease.
In children, differential diagnosis is more difficult because of the problems inherent in getting infants to cooperate with a full eye movement investigation. Possible alternative diagnosis for an abduction deficit would include:
1. Mobius syndrome - a rare congenital disorder in which both VIth and VIIth nerves are bilaterally affected giving rise to a typically 'expressionless' face.
2. Duane's syndrome - A condition in which both abduction and adduction are affected arising as a result of partial innervation of the lateral rectus by branches from the IIIrd oculomotor cranial nerve.
3. Cross fixation which develops in the presence of infantile esotropia or nystagmus blockage syndrome and results in habitual weakness of lateral rectii.
4. Iatrogenic injury. Abducens nerve palsy is also known to occur with halo orthosis placement.The resultant palsy is identified through loss of lateral gaze after application of the orthosis and is the most common cranial nerve injury associated with this device.
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
The first aims of management should be to identify and treat the cause of the condition, where this is possible, and to relieve the patient's symptoms, where present. In children, who rarely appreciate diplopia, the aim will be to maintain binocular vision and, thus, promote proper visual development.
Thereafter, a period of observation of around 9 to 12 months is appropriate before any further intervention, as some palsies will recover without the need for surgery.
The prognosis of a lesion in the visual neural pathways that causes a conjugate gaze palsy varies greatly. Depending on the nature of the lesion, recovery may happen rapidly or recovery may never progress. For example, optic neuritis, which is caused by inflammation, may heal in just weeks, while patients with an ischemic optic neuropathy may never recover.
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Exophoria can be caused by several factors, which include:
- Refractive errors - distance and near deviation approximately equal.
- Divergence excess - exodeviation is more than 15 dioptres greater for distance than near deviation.
- Convergence insufficiency - near exodeviation greater than distance deviation.
These can be due to nerve, muscle, or congenital problems, or due to mechanical anomalies. Unlike exotropia, fusion is possible in this condition, causing diplopia to be uncommon.
According to an American study nearly three in 10 children (28.4%) between the ages of five and 17 have astigmatism. A recent Brazilian study found that 34% of the students in one city were astigmatic. Regarding the prevalence in adults, a recent study in Bangladesh found that nearly 1 in 3 (32.4%) of those over the age of 30 had astigmatism.
A Polish study published in 2005 revealed "with-the-rule astigmatism" may lead to the onset of myopia.
A number of studies have found the prevalence of astigmatism increases with age.
Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria.
Causes include:
- Refractive errors
- Divergence insufficiency
- Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.
Unlike esotropia, fusion is possible and therefore diplopia is uncommon.