Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Diagnosis of nocardiosis can be done by a doctor using various techniques. These techniques include, but are not limited to: a chest x-rays of the lung, a bronchoscopy, a brain/lung/skin biopsy, or a sputum culture.
However, diagnosis may be difficult. Nocardiae are gram positive weakly acid-fast branching rod-shaped bacteria and can be visualized by a modified Ziehl–Neelsen stain like Fite-Faraco method. In the clinical laboratory, routine cultures may be held for insufficient time to grow nocardiae, and referral to a reference laboratory may be needed for species identification. Infiltration and pleural effusion are usually seen via x-ray.
Clinically, there is a wide spectrum of disease manifestation, making diagnosis somewhat difficult. More severe forms include: (1) the chronic pulmonary form, often occurring in the presence of underlying pulmonary disease; and (2) a disseminated form, which is characterized by the progressive spread of infection to extra-pulmonary sites. Oral manifestations have been reported as the main complaint of the disseminated forms, leading the patient to seek treatment, whereas pulmonary symptoms in disseminated disease may be mild or even misinterpreted as flu. Histoplasmosis can be diagnosed by samples containing the fungus taken from sputum (via bronchoalveolar lavage), blood, or infected organs. It can also be diagnosed by detection of antigens in blood or urine samples by ELISA or PCR. Antigens can cross-react with antigens of African histoplasmosis (caused by Histoplasma duboisii), blastomycosis, coccidioidomycosis, paracoccidioidomycosis, and Penicillium marneffei infection. Histoplasmosis can also be diagnosed by a test for antibodies against "Histoplasma" in the blood. "Histoplasma" skin tests indicate whether a person has been exposed, but do not indicate whether they have the disease. Formal histoplasmosis diagnoses are often confirmed only by culturing the fungus directly. Sabouraud agar is one type of agar growth media on which the fungus can be cultured. Cutaneous manifestations of disseminated disease are diverse and often present as a nondescript rash with systemic complaints. Diagnosis is best established by urine antigen testing, as blood cultures may take up to 6 weeks for diagnostic growth to occur and serum antigen testing often comes back with a false negative before 4 weeks of disseminated infection.
The prognosis of nocardiosis is highly variable. The state of the host's health, site, duration, and severity of the infection all play parts in determining the prognosis. As of now, skin and soft tissue infections have a 100% cure rate, and pleuropulmonary infections have a 90% cure rate with appropriate therapy. The cure rate falls to 63% with those infected with dissemented nocardiosis, with only half of those surviving infections that cause brain abscess. Additionally, 44% of people who are infected in the spinal cord/brain die, increasing to 85% if that person has an already weakened immune system. Unfortunately, there is not a preventative to nocardiosis. The only recommendation is to protect open wounds to limit access.
Diagnosis is often made by visualization of yeast cells in tissue, or superficial scrapings. Radiography of the chest reveals interstitial infiltrates in the majority of cases.
Fungal pneumonia can be diagnosed in a number of ways. The simplest and cheapest method is to culture the fungus from a patient's respiratory fluids. However, such tests are not only insensitive but take time to develop which is a major drawback because studies have shown that slow diagnosis of fungal pneumonia is linked to high mortality. Microscopy is another method but is also slow and imprecise. Supplementing these classical methods is the detection of antigens. This technique is significantly faster but can be less sensitive and specific than the classical methods.
A molecular test based on quantitative PCR is also available from Myconostica. Relying on DNA detection, this is the most sensitive and specific test available for fungi but it is limited to detecting only pneumocystis jirovecii and aspergillus.
If suspected, fungal meningitis is diagnosed by testing blood and CSF samples for pathogens. Identifying the specific pathogen is necessary to determine the proper course of treatment and the prognosis. Measurement of opening pressure, cell count with differential, glucose and protein concentrations, Gram's stain, India ink, and culture tests should be preformed on CSF samples when fungal meningitis is suspected.
On chest X-ray and CT, pulmonary aspergillosis classically manifests as a halo sign, and, later, an air crescent sign.
In hematologic patients with invasive aspergillosis, the galactomannan test can make the diagnosis in a noninvasive way. False positive "Aspergillus" galactomannan tests have been found in patients on intravenous treatment with some antibiotics or fluids containing gluconate or citric acid such as some transfusion platelets, parenteral nutrition or PlasmaLyte.
On microscopy, "Aspergillus" species are reliably demonstrated by silver stains, e.g., Gridley stain or Gomori methenamine-silver. These give the fungal walls a gray-black colour. The hyphae of "Aspergillus" species range in diameter from 2.5 to 4.5 µm. They have septate hyphae, but these are not always apparent, and in such cases they may be mistaken for Zygomycota. "Aspergillus" hyphae tend to have dichotomous branching that is progressive and primarily at acute angles of about 45°.
Sulfonamides are the traditional remedies to paracoccidiodomycosis. They were introduced by Oliveira Ribeiro and used for more than 50 years with good results. The most-used sulfa drugs in this infection are sulfadimethoxime, sulfadiazine, and co-trimoxazole. This treatment is generally safe, but several adverse effects can appear, the most severe of which are the Stevens-Johnson syndrome and agranulocytosis. Similarly to tuberculosis treatment, it must be continued for up to three years to eradicate the fungus, and relapse and treatment failures are not unusual.
Antifungal drugs such as amphotericin B or itraconazole and ketoconazole are more effective in clearing the infection, but are limited by their cost when compared with sulfonamides.During therapy, fibrosis can appear and surgery may be needed to correct this. Another possible complication is Addisonian crisis. The mortality rate in children is around 7-10%.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
Fungal pneumonia can be treated with antifungal drugs and sometimes by surgical debridement.
Chest x-rays rarely demonstrate nodules or cavities in the lungs, but these images commonly demonstrate lung opacification, pleural effusions, or enlargement of lymph nodes associated with the lungs. Computed tomography scans of the chest are better able to detect these changes than chest x-rays.
Coccidioidomycosis diagnosis relies on a combination of an infected person's signs and symptoms, findings on radiographic imaging, and laboratory results.
The disease is commonly misdiagnosed as bacterial community-acquired pneumonia. The fungal infection can be demonstrated by microscopic detection of diagnostic cells in body fluids, exudates, sputum and biopsy tissue by methods of Papanicolaou or Grocott's methenamine silver staining. These stains can demonstrate spherules and surrounding inflammation.
With specific nucleotide primers, "C.immitis" DNA can be amplified by polymerase chain reaction (PCR). It can also be detected in culture by morphological identification or by using molecular probes that hybridize with "C.immitis" RNA. "C. immitis" and "C. posadasii" cannot be distinguished on cytology or by symptoms, but only by DNA PCR.
An indirect demonstration of fungal infection can be achieved also by serologic analysis detecting fungal antigen or host IgM or IgG antibody produced against the fungus. The available tests include the tube-precipitin (TP) assays, complement fixation assays, and enzyme immunoassays. TP antibody is not found in cerebrospinal fluid (CSF). TP antibody is specific and is used as a confirmatory test, whereas ELISA is sensitive and thus used for initial testing.
If the meninges are affected, CSF will show abnormally low glucose levels in CSF, an increased level of protein in the CSF, and lymphocytic pleocytosis. Rarely, CSF eosinophilia is present.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
Diagnosis can be achieved through blood cultures, or cultures of other bodily fluids such as sputum. Bone marrow culture can often yield an earlier diagnosis, but is usually avoided as an initial diagnostic step because of its invasiveness.
Many people will have anemia and neutropenia if bone marrow is involved. MAC bacteria should always be considered in a person with HIV infection presenting with diarrhea.
The diagnosis requires consistent symptoms with two additional signs:
- Chest X-ray or CT scan showing evidence of right middle lobe (or left lingular lobe) lung infection
- Sputum culture or bronchoalveolar lavage culture demonstrating the infection is caused by MAC
Disseminated MAC is most readily diagnosed by one positive blood culture. Blood cultures should be performed in patients with symptoms, signs, or laboratory abnormalities compatible with mycobacterium infection. Blood cultures are not routinely recommended for asymptomatic persons, even for those who have CD4+ T-lymphocyte counts less than 100 cells/uL.
Progressive disseminated histoplasmosis is an infection caused by Histoplasma capsulatum, and most people who develop this severe form of histoplasmosis are immunocompromised or taking systemic corticosteroids. Skin lesions are present in approximately 6% of patients with dissemination.
MAC in patients with HIV disease is theorized to represent recent acquisition rather than latent infection reactivating (which is the case in many other opportunistic infections in immunocompromised patients).
The risk of MAC is inversely related to the patient's CD4 count, and increases significantly when the CD4 count decreases below 50 cells/mm³. Other risk factors for acquisition of MAC infection include using an indoor swimming pool, consumption of raw or partially cooked fish or shellfish, bronchoscopy and treatment with granulocyte stimulating factor.
Disseminated disease was previously the common presentation prior to the advent of highly active antiretroviral therapy (HAART). Today, in regions where HAART is the standard of care, localized disease presentation is more likely. This generally includes a focal lymphadenopathy/lymphadenitis.
Purpura hemorrhagica may be prevented by proper management during an outbreak of strangles. This includes isolation of infected horses, disinfection of fomites, and good hygiene by caretakers. Affected horses should be isolated at least one month following infection. Exposed horses should have their temperature taken daily and should be quarantined if it becomes elevated. Prophylactic antimicrobial treatment is not recommended.
Vaccination can reduce the incidence and severity of the disease. However, horses with high SeM antibody titers are more likely to develop purpura hemorrhagica following vaccination and so these horses should not be vaccinated. Titers may be measured by ELISA.
Systemic candidiasis is an infection of Candida albicans causing disseminated disease and sepsis, invariably when host defenses are compromised.
Dermatophytids are fungus-free disseminated skin lesions resulting from induced sensitization in patients with ringworm infections.
The most common dermatophytid is an inflammation in the hands resulting from a fungus infection of the feet. Dermatophytids normally disappear when the primary ringworm infection is treated.
Dermatophytids may resemble erythema nodosum.
Diagnosis rests on the microscopic identification of larvae (rhabditiform and occasionally filariform) in the stool or duodenal fluid. Examination of many samples may be necessary, and not always sufficient, because direct stool examination is relatively insensitive, with a single sample only able to detect larvae in about 25% of cases. It can take 4 weeks from initial infection to the passage of larvae in the stool.
The stool can be examined in wet mounts:
- directly
- after concentration (formalin-ethyl acetate)
- after recovery of the larvae by the Baermann funnel technique
- after culture by the Harada-Mori filter paper technique
- after culture in agar plates
Culture techniques are the most sensitive, but are not routinely available in the West. In the UK, culture is available at either of the Schools of Tropical Medicine in Liverpool or London. Direct examination must be done on stool that is freshly collected and not allowed to cool down, because hookworm eggs hatch on cooling and the larvae are very difficult to distinguish from Strongyloides.
Finding Strongyloides in the stool is negative in up to 70% of tests. It is important to undergo frequent stool sampling as well as duodenal biopsy if a bad infection is suspected. The duodenal fluid can be examined using techniques such as the Enterotest string or duodenal aspiration. Larvae may be detected in sputum from patients with disseminated strongyloidiasis.
Given the poor ability of stool examination to diagnose strongyloides, detecting antibodies by ELISA can be useful. Serology can cross-react with other parasites, remain positive for years after successful treatment or be falsely negative in immunocompromised patients. Infected patients will also often have an elevated eosinophil count, with an average of absolute eosinophil count of 1000 in one series. The combination of clinical suspicion, a positive antibody and a peripheral eosinophilia can be strongly suggestive of infection.
Prognosis is good with early, aggressive treatment (92% survival in one study).
Mendelian susceptibility to mycobacterial disease, also called familial disseminated atypical mycobacterial infection, is a rare genetic disease characterized by susceptibility to mycobacteria and Salmonella infection outside of the intestinal tract.
It can be treated with systemic antiviral drugs, such as aciclovir or valganciclovir. Foscarnet may also be used for immunocompromised host with Herpes simplex and acyclovir-resistant Herpes simplex.
Routine vaccination against meningococcus is recommended by the Centers for Disease Control and Prevention for all 11- to 18-year-olds and people who have poor splenic function (who, for example, have had their spleen removed or who have sickle-cell disease which damages the spleen), or who have certain immune disorders, such as a complement deficiency.