Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Children's blood sugar levels are often slightly lower than adults'. Overnight fasting glucose levels are below 70 mg/dL (3.9 mM) in 5% of healthy adults, but up to 5% of children can be below 60 mg/dL (3.3 mM) in the morning fasting state. As the duration of fasting is extended, a higher percentage of infants and children will have mildly low plasma glucose levels, usually without symptoms. The normal range of newborn blood sugars continues to be debated. It has been proposed that newborn brains are able to use alternate fuels when glucose levels are low more readily than adults. Experts continue to debate the significance and risk of such levels, though the trend has been to recommend maintenance of glucose levels above 60–70 mg/dL the first day after birth.
Diabetic hypoglycemia represents a special case with respect to the relationship of measured glucose and hypoglycemic symptoms for several reasons. First, although home glucose meter readings are often misleading, the probability that a low reading, whether accompanied by symptoms or not, represents real hypoglycemia is much higher in a person who takes insulin than in someone who does not.
The following is a brief list of hormones and metabolites which may be measured in a critical sample. Not all tests are checked on every patient. A "basic version" would include insulin, cortisol, and electrolytes, with C-peptide and drug screen for adults and growth hormone in children. The value of additional specific tests depends on the most likely diagnoses for an individual patient, based on the circumstances described above. Many of these levels change within minutes, especially if glucose is given, and there is no value in measuring them after the hypoglycemia is reversed. Others, especially those lower in the list, remain abnormal even after hypoglycemia is reversed, and can be usefully measured even if a critical specimen is missed.
Part of the value of the critical sample may simply be the proof that the symptoms are indeed due to hypoglycemia. More often, measurement of certain hormones and metabolites at the time of hypoglycemia indicates which organs and body systems are responding appropriately and which are functioning abnormally. For example, when the blood glucose is low, hormones which raise the glucose should be rising and insulin secretion should be completely suppressed.
The concentration of ketone bodies may vary depending on diet, exercise, degree of metabolic adaptation and genetic factors. Ketosis can be induced when a ketogenic diet is followed for more than 3 days. This induced ketosis is sometimes called nutritional ketosis. This table shows the concentrations typically seen under different conditions
Note that urine measurements may not reflect blood concentrations. Urine concentrations are lower with greater hydration, and after adaptation to a ketogenic diet the amount lost in the urine may drop while the metabolism remains ketotic. Most urine strips only measure acetoacetate, while when ketosis is more severe the predominant ketone body is β-hydroxybutyrate. Unlike glucose, ketones are excreted into urine at any blood level. Ketoacidosis is a metabolic derangement that cannot occur in a healthy individual who can produce insulin, and should not be confused with physiologic ketosis.
A wide variety of companies manufacture ketone screening strips. A strip consists of a thin piece of plastic film slightly larger than a matchstick, with a reagent pad on one end that is either dipped into a urine sample or passed through the stream while the user is voiding. The pad is allowed to react for an exact, specified amount of time (it is recommended to use a stopwatch to time this exactly and disregard any resultant colour change after the specified time); its resulting colour is then compared to a graded shade chart indicating a detection range from negative presence of ketones up to a significant quantity. It is worth noting that in severe diabetic ketoacidosis, the dipstix reaction based on sodium nitroprusside may underestimate the level of ketone bodies in the blood. It is sensitive to acetoacetate only, and the ratio of beta-hydroxybutyrate to acetoacetate is shifted from a normal value of around 1:1 up to around 10:1 under severely ketoacetotic conditions, due to a changing redox milieu in the liver. Measuring acetoacetate alone will thus underestimate the accompanying beta-hydroxybutyrate if the standard conversion factor is applied.
The diagnosis is based on a combination of typical clinical features and exclusion by a pediatric endocrinologist of other causes of "hypoglycemia with ketosis," especially growth hormone deficiency, hypopituitarism, adrenal insufficiency, and identifiable inborn errors of metabolism such as organic acidoses.
The most useful diagnostic tests include measurement of insulin, growth hormone, cortisol, and lactic acid at the time of the hypoglycemia. Plasma acylcarnitine levels and urine organic acids exclude some of the important metabolic diseases. When the episodes are recurrent or severe, the definitive test is a hospitalization for a supervised diagnostic fast. This usually demonstrates "accelerated fasting"—a shorter time until the glucose begins to fall, but normal metabolic and counterregulatory responses as the glucose falls. As the glucose reaches hypoglycemic levels, the insulin is undetectable, counterregulatory hormones, fatty acids, and ketones are high, and glucagon injection elicits no rise of glucose.
Some clinicians regard eliminating carbohydrates as unhealthy and dangerous. However, it is not necessary to eliminate carbohydrates from the diet completely to achieve ketosis. Other clinicians regard ketosis as a safe biochemical process that occurs during the fat-burning state. Ketosis, which is accompanied by gluconeogenesis (the creation of glucose de novo from pyruvate), is the specific state that concerns some clinicians. However, it is unlikely for a normally functioning person to reach life-threatening levels of ketosis, defined as serum beta-hydroxybutyrate (B-OHB) levels above 15 millimolar (mM) compared to ketogenic diets among non diabetics, which "rarely run serum B-OHB levels above 3 mM." This is avoided with proper basal secretion of pancreatic insulin. People who are unable to secrete basal insulin, such as type 1 diabetics and long-term type II diabetics, are liable to enter an unsafe level of ketosis, eventually resulting in a coma that requires emergency medical treatment. The anti-ketosis conclusions have been challenged by a number of doctors and advocates of low-carbohydrate diets, who dispute assertions that the body has a preference for glucose and that there are dangers associated with ketosis.
Screening for ketonuria is done frequently for acutely ill patients, presurgical patients, and pregnant women. Any diabetic patient who has elevated levels of blood and urine glucose should be tested for urinary ketones. In addition, when diabetic treatment is being switched from insulin to oral hypoglycemic agents, the patient's urine should be monitored for ketonuria. The development of ketonuria within 24 hours after insulin withdrawal usually indicates a poor response to the oral hypoglycemic agents. Diabetic patients should have their urine tested regularly for glucose and ketones, particularly when acute infection or other illness develops.
In conditions associated with acidosis, urinary ketones are tested to assess the severity of acidosis and to monitor treatment response. Urine ketones appear before there is any significant increase in blood ketones; therefore, urine ketone measurement is especially helpful in emergency situations.
The gold standard for investigating and quantifying insulin resistance is the "hyperinsulinemic euglycemic clamp," so-called because it measures the amount of glucose necessary to compensate for an increased insulin level without causing hypoglycemia. It is a type of glucose clamp technique. The test rarely is performed in clinical care, but is used in medical research, for example, to assess the effects of different medications. The rate of glucose infusion commonly is referred to in diabetes literature as the GINF value.
The procedure takes about two hours. Through a peripheral vein, insulin is infused at 10–120 mU per m per minute. In order to compensate for the insulin infusion, glucose 20% is infused to maintain blood sugar levels between 5 and 5.5 mmol/L. The rate of glucose infusion is determined by checking the blood sugar levels every five to ten minutes.
The rate of glucose infusion during the last thirty minutes of the test determines insulin sensitivity. If high levels (7.5 mg/min or higher) are required, the patient is insulin-sensitive. Very low levels (4.0 mg/min or lower) indicate that the body is resistant to insulin action. Levels between 4.0 and 7.5 mg/min are not definitive, and suggest "impaired glucose tolerance," an early sign of insulin resistance.
This basic technique may be enhanced significantly by the use of glucose tracers. Glucose may be labeled with either stable or radioactive atoms. Commonly used tracers are 3-H glucose (radioactive), 6,6 H-glucose (stable) and 1-C Glucose (stable). Prior to beginning the hyperinsulinemic period, a 3h tracer infusion enables one to determine the basal rate of glucose production. During the clamp, the plasma tracer concentrations enable the calculation of whole-body insulin-stimulated glucose metabolism, as well as the production of glucose by the body (i.e., endogenous glucose production).
Another measure of insulin resistance is the modified insulin suppression test developed by Gerald Reaven at Stanford University. The test correlates well with the euglycemic clamp, with less operator-dependent error. This test has been used to advance the large body of research relating to the metabolic syndrome.
Patients initially receive 25 μg of octreotide (Sandostatin) in 5 mL of normal saline over 3 to 5 minutes via intravenous infusion (IV) as an initial bolus, and then, are infused continuously with an intravenous infusion of somatostatin (0.27 μg/m/min) to suppress endogenous insulin and glucose secretion. Next, insulin and 20% glucose are infused at rates of 32 and 267 mg/m/min, respectively. Blood glucose is checked at zero, 30, 60, 90, and 120 minutes, and thereafter, every 10 minutes for the last half-hour of the test. These last four values are averaged to determine the steady-state plasma glucose level (SSPG). Subjects with an SSPG greater than 150 mg/dL are considered to be insulin-resistant.
Children "outgrow" ketotic hypoglycemia, presumably because fasting tolerance improves as body mass increases. In most the episodes become milder and more infrequent by 4 to 5 years of age and rarely occur after age 9. Onset of hypoglycemia with ketosis after age 5 or persistence after age 7 should elicit referral and an intensive search for a more specific disease.
It is critical for patients who monitor glucose levels at home to be aware of which units of measurement their testing kit uses.
Glucose levels are measured in either:
1. Millimoles per liter (mmol/l) is the SI standard unit used in most countries around the world.
2. Milligrams per deciliter (mg/dl) is used in some countries such as the United States, Japan, France, Egypt and Colombia.
Scientific journals are moving towards using mmol/l; some journals now use mmol/l as the primary unit but quote mg/dl in parentheses.
Glucose levels vary before and after meals, and at various times of day; the definition of "normal" varies among medical professionals. In general, the normal range for most people (fasting adults) is about 4 to 6 mmol/l or 80 to 110 mg/dl. (where 4 mmol/l or 80 mg/dl is "optimal".) A subject with a consistent range above 7 mmol/l or 126 mg/dl is generally held to have hyperglycemia, whereas a consistent range below 4 mmol/l or 70 mg/dl is considered hypoglycemic. In fasting adults, blood plasma glucose should not exceed 7 mmol/l or 126 mg/dL. Sustained higher levels of blood sugar cause damage to the blood vessels and to the organs they supply, leading to the complications of diabetes.
Chronic hyperglycemia can be measured via the HbA1c test. The definition of acute hyperglycemia varies by study, with mmol/l levels from 8 to 15 (mg/dl levels from 144 to 270).
Defects in insulin secretion, insulin action, or both, results in hyperglycemia.
To treat people with a deficiency of this enzyme, they must avoid needing gluconeogenesis to make glucose. This can be accomplished by not fasting for long periods, and eating high-carbohydrate food. They should avoid fructose containing foods (as well as sucrose which breaks down to fructose).
As with all single-gene metabolic disorders, there is always hope for genetic therapy, inserting a healthy copy of the gene into existing liver cells.
Ketones in the urine or blood, as detected by urine strips or a blood ketone testing meter, may indicate the beginning of diabetic ketoacidosis (DKA), a dangerous and often quickly fatal condition caused by high glucose levels (hyperglycemia) and low insulin levels combined with certain other systemic stresses. DKA can be arrested if caught quickly.
Ketones are produced by the liver as part of fat metabolism and are normally not found in sufficient quantity to be measured in the urine or blood of non-diabetics or well-controlled diabetics. The body normally uses glucose as its fuel and is able to do so with sufficient insulin levels. When glucose is not available as an energy source because of untreated or poorly treated diabetes and some other unrelated medical conditions, it begins to use fat for energy instead. The result of the body turning to using fat instead of glucose for energy means ketone production that is measurable when testing either urine or blood for them.
Ketone problems that are more serious than the "trace or slight" range need immediate medical attention; they cannot be treated at home. Veterinary care for ketosis/ketoacidosis can involve intravenous (IV) fluids to counter dehydration, when necessary, to replace depleted electrolytes, intravenous or intramuscular short-acting insulin to lower blood glucose levels, and measured amounts of glucose or force feeding, to bring the metabolism back to using glucose instead of fat as its source of energy.
When testing urine for ketones, the sample needs to be as fresh as possible. Ketones evaporate quickly, so there is a chance of getting a false negative test result if testing older urine. The urine testing strip bottle has instructions and color charts to illustrate how the color on the strip will change given the level of ketones or glucose in the urine over 15 (ketones–Ketostix) or 30 (glucose–Ketodiastix) seconds. Reading the colors at those time intervals is important because the colors will continue to darken and a later reading will be an incorrect result. Timing with a clock or watch second hand instead of counting is more accurate.
At present, there is only one glucometer available for home use that tests blood for ketones using special strips for that purpose–Abbott's Precision Xtra. This meter is known as Precision, Optium, or Xceed outside of the US. The blood ketone test strips are very expensive; prices start at about US$50 for ten strips. It is most likely urine test strips–either ones that test only for ketones or ones that test for both glucose and ketones in urine would be used. The table above is a guide to when ketones may be present.
The use of an inexpensive glucometer and blood glucose testing at home can help avoid dangerous insulin overdoses and can provide a better picture of how well the condition is managed.
A 2003 study of canine diabetes caregivers who were new to testing blood glucose at home found 85% of them were able to both succeed at testing and to continue it on a long-term basis. Using only one blood glucose reading as the reason for an insulin dose increase is to be avoided; while the results may be higher than desired, further information, such as the lowest blood glucose reading or nadir, should be available to prevent possible hypoglycemia.
Urine strips are not recommended to be used as the sole factor for insulin adjustments as they are not accurate enough. Urine glucose testing strips have a negative result until the renal threshold of 10 mmol/L or 180 mg/dL is reached or exceeded for a period of time. The range of negative reading values is quite wide-covering normal or close to normal blood glucose values with no danger of hypoglycemia (euglycemia) to low blood glucose values (hypoglycemia) where treatment would be necessary. Because urine is normally retained in the bladder for a number of hours, the results of urine testing are not an accurate measurement of the levels of glucose in the bloodstream at the time of testing.
Glucometers made for humans are generally accurate using canine and feline blood except when reading lower ranges of blood glucose (<80 mg/dL), (<4.44 mmol/L). It is at this point where the size difference in human vs animal red blood cells can create inaccurate readings. Glucometers for humans were successfully used with pets long before animal-oriented meters were produced. A 2009 study directly compared readings from both types of glucometers to those of a chemistry analyzer. Neither glucometer's readings exactly matched those of the analyzer, but the differences of both were not clinically significant when compared to analyzer results. All glucometer readings need to be compared to same sample laboratory values to determine accuracy.
Treatment of hyperglycemia requires elimination of the underlying cause, such as diabetes. Acute hyperglycemia can be treated by direct administration of insulin in most cases. Severe hyperglycemia can be treated with oral hypoglycemic therapy and lifestyle modification.
In diabetes mellitus (by far the most common cause of chronic hyperglycemia), treatment aims at maintaining blood glucose at a level as close to normal as possible, in order to avoid these serious long-term complications. This is done by a combination of proper diet, regular exercise, and insulin or other medication such as metformin, etc.
Those with hyperglycaemia can be treated using sulphonylureas or metformin or both. These drugs help by improving glycaemic control
Dipeptidyl peptidase 4 inhibitor alone or in combination with basal insulin can be used as a treatment for hyperglycemia with patients still in the hospital.
The World Health Organization 1999 criteria require the presence of any one of diabetes mellitus, impaired glucose tolerance, impaired fasting glucose or insulin resistance, AND two of the following:
- Blood pressure: ≥ 140/90 mmHg
- Dyslipidemia: triglycerides (TG): ≥ 1.695 mmol/L and high-density lipoprotein cholesterol (HDL-C) ≤ 0.9 mmol/L (male), ≤ 1.0 mmol/L (female)
- Central obesity: waist:hip ratio > 0.90 (male); > 0.85 (female), or body mass index > 30 kg/m
- Microalbuminuria: urinary albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g
The European Group for the Study of Insulin Resistance (1999) requires insulin resistance defined as the top 25% of the fasting insulin values among nondiabetic individuals AND two or more of the following:
- Central obesity: waist circumference ≥ 94 cm or 37 inches (male), ≥ 80 cm or 31.5 inches (female)
- Dyslipidemia: TG ≥ 2.0 mmol/L and/or HDL-C < 1.0 mmol/L or treated for dyslipidemia
- Hypertension: blood pressure ≥ 140/90 mmHg or antihypertensive medication
- Fasting plasma glucose ≥ 6.1 mmol/L
Without effective gluconeogenesis (GNG), hypoglycaemia will set in after about 12 hours of fasting. This is the time when liver glycogen stores have been exhausted, and the body has to rely on GNG. When given a dose of glucagon (which would normally increase blood glucose) nothing will happen, as stores are depleted and GNG doesn't work. (In fact, the patient would already have high glucagon levels.)
There is no problem with the metabolism of glucose or galactose, but fructose and glycerol cannot be used by the liver to maintain blood glucose levels. If fructose or glycerol are given, there will be a buildup of phosphorylated three-carbon sugars. This leads to phosphate depletion within the cells, and also in the blood. Without phosphate, ATP cannot be made, and many cell processes cannot occur.
High levels of glucagon will tend to release fatty acids from adipose tissue, and this will combine with glycerol that cannot be used in the liver, to make triacylglycerides causing a fatty liver.
As three carbon molecules cannot be used to make glucose, they will instead be made into pyruvate and lactate. These acids cause a drop in the pH of the blood (a metabolic acidosis). Acetyl CoA (acetyl co-enzyme A) will also build up, leading to the creation of ketone bodies.
To relieve reactive hypoglycemia, the NIH recommends taking the following steps:
- Avoiding or limiting sugar intake;
- Exercising regularly; exercise increases sugar uptake which decreases excessive insulin release
- Eating a variety of foods, including meat, poultry, fish, or nonmeat sources of protein, foods such as whole-grains, fruits, nuts, vegetables, and dairy products;
- Choosing high-fiber foods.
Other tips to prevent sugar crashes include:
- Avoiding eating meals or snacks composed entirely of carbohydrates; simultaneously ingest fats and proteins, which have slower rates of absorption.
- Consistently choosing longer lasting, complex carbohydrates to prevent rapid blood-sugar dips in the event that one does consume a disproportionately large amount of carbohydrates with a meal
- Monitoring any effects medication may have on symptoms.
Low-carbohydrate diet and/or frequent small split meals is the first treatment of this condition. The first important point is to add small meals at the middle of the morning and of the afternoon, when glycemia would start to decrease. If adequate composition of the meal is found, the fall in blood glucose is thus prevented. Patients should avoid rapidly absorbable sugars and thus avoid popular soft drinks rich in glucose or sucrose. They should also be cautious with drinks associating sugar and alcohol, mainly in the fasting state.
As it is a short-term ailment, a sugar crash does not usually require medical intervention in most people. The most important factors to consider when addressing this issue are the composition and timing of foods.
Acute low blood sugar symptoms are best treated by consuming small amounts of sweet foods, so as to regain balance in the body’s carbohydrate metabolism. Suggestions include sugary foods that are quickly digested, such as:
- Dried fruit
- Soft drinks
- Juice
- Sugar as sweets, tablets or cubes.
A genetic test is available for Type 1 PSSM. This test requires a blood or hair sample, and is less-invasive than muscle biopsy. However, it may be less useful for breeds that are more commonly affected by Type 2 PSSM, such as light horse breeds. Often a muscle biopsy is recommended for horses displaying clinical signs of PSSM but who have negative results for GYS1 mutation.
A muscle biopsy may be taken from the semimembranosis or semitendinosis (hamstring) muscles. The biopsy is stained for glycogen, and the intensity of stain uptake in the muscle, as well as the presence of any inclusions, helps to determine the diagnosis of PSSM. This test is the only method for diagnosing Type 2 PSSM. Horses with Type 1 PSSM will usually have between 1.5-2 times the normal levels of glycogen in their skeletal muscle. While abnormalities indicating muscle damage can be seen on histologic sections of muscle as young as 1 month of age, abnormal polysaccharide accumulation may take up to 3 years to develop.
If there is no hypoglycemia at the time of the symptoms, this condition is called "postprandial syndrome." It might be an "adrenergic postprandial syndrome" — blood glucose levels are normal, but the symptoms are caused through autonomic adrenergic counterregulation. Often, this syndrome is associated with emotional distress and anxious behaviour of the patient. This is often seen in dysautonomic disorders as well. Dietary recommendations for reactive hypoglycemia can help to relieve symptoms of postprandial syndrome.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate.
Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.
Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis.
Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover. Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone.
Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia.
Infants are routinely screened for galactosemia in the United States, and the diagnosis is made while the person is still an infant. Infants affected by galactosemia typically present with symptoms of lethargy, vomiting, diarrhea, failure to thrive, and jaundice. None of these symptoms are specific to galactosemia, often leading to diagnostic delays. Luckily, most infants are diagnosed on newborn screening. If the family of the baby has a history of galactosemia, doctors can test prior to birth by taking a sample of fluid from around the fetus (amniocentesis) or from the placenta (chorionic villus sampling or CVS).
A galactosemia test is a blood test (from the heel of the infant) or urine test that checks for three enzymes that are needed to change galactose sugar that is found in milk and milk products into glucose, a sugar that the human body uses for energy. A person with galactosemia doesn't have one of these enzymes. This causes high levels of galactose in the blood or urine.
Galactosemia is normally first detected through newborn screening, or NBS. Affected children can have serious, irreversible effects or even die within days from birth. It is important that newborns be screened for metabolic disorders without delay. Galactosemia can even be detected through NBS before any ingestion of galactose-containing formula or breast milk.
Detection of the disorder through newborn screening (NBS) does not depend on protein or lactose ingestion, and, therefore, it should be identified on the first specimen unless the infant has been transfused. A specimen should be taken prior to transfusion. The enzyme is prone to damage if analysis of the sample is delayed or exposed to high temperatures. The routine NBS is accurate for detection of galactosemia. Two screening tests are used to screen infants affected with galactosemia—the Beutler's test and the Hill test. The Beutler's test screens for galactosemia by detecting the level of enzyme of the infant. Therefore, the ingestion of formula or breast milk does not affect the outcome of this part of the NBS, and the NBS is accurate for detecting galactosemia prior to any ingestion of galactose.
Duarte galactosemia is a milder form of classical galactosemia and usually has no long term side effects.
Because of the ease of therapy (dietary exclusion of fructose), HFI can be effectively managed if properly diagnosed. In HFI, the diagnosis of homozygotes is difficult, requiring a genomic DNA screening with allele specific probes or an enzyme assay from a liver biopsy. Once identified, parents of infants who carry mutant aldolase B alleles leading to HFI, or older individuals who have clinical histories compatible with HFI can be identified and counselled with regard to preventive therapy: dietary exclusion of foods containing fructose, sucrose, or sorbitol. If possible, individuals who suspect they might have HFI, should avoid testing via fructose challenge as the results are non-conclusive for individuals with HFI and even if the diagnostic administration fructose is properly controlled, profound hypoglycemia and its sequelae can threaten the patient's well-being.