Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis is usually initially made by a combination of physical exam and MRI of the shoulder, which can be done with or without the injection of intraarticular contrast. The presence of contrast allows for better evaluation of the glenoid labrum.
Arthroscopic repair of Bankart injuries have high success rates, with studies showing that nearly one-third of patients require re-intervention for continued shoulder instability following repair. Options for repair include an arthroscopic technique or a more invasive open Latarjet procedure, with the open technique tending to have a lower incidence of recurrent dislocation, but also a reduced range of motion following surgery.
The decisions involved in the repair of the Hill–Sachs lesion are complex. First, it is not repaired simply because of its existence, but because of its association with continuing symptoms and instability. This may be of greatest importance in the under-25-year-old and in the athlete involved in throwing activities. The Hill-Sachs role in continuing symptoms, in turn, may be related to its size and large lesions, particularly if involving greater than 20% of the articular surface, may impinge on the glenoid fossa (engage), promoting further episodes of instability or even dislocation. Also, it is a fracture, and associated bony lesions or fractures may coexist in the glenoid, such as the so-called bony Bankart lesion. Consequently, its operative treatment may include some form of bony augmentation, such as the Latarjet or similar procedure. Finally, there is no guarantee that associated non-bony lesions, such as a Bankart lesion, SLAP tear, or biceps tendon injury, may not be present and require intervention.
Imaging diagnosis conventionally begins with plain film radiography. Generally, AP radiographs of the shoulder with the arm in internal rotation offer the best yield while axillary views and AP radiographs with external rotation tend to obscure the defect. However, pain and tenderness in the injured joint make appropriate positioning difficult and in a recent study of plain film x-ray for Hill–Sachs lesions, the sensitivity was only about 20%. i.e. the finding was not visible on plain film x-ray about 80% of the time.
By contrast, studies have shown the value of ultrasonography in diagnosing Hill–Sachs lesions. In a population with recurrent dislocation using findings at surgery as the gold standard, a sensitivity of 96% was demonstrated. In a second study of patients with continuing shoulder instability after trauma, and using double contrast CT as a gold standard, a sensitivity of over 95% was demonstrated for ultrasound. It should be borne in mind that in both those studies, patients were having continuing problems after initial injury, and therefore the presence of a Hill–Sachs lesion was more likely. Nevertheless, ultrasonography, which is noninvasive and free from radiation, offers important advantages.
MRI has also been shown to be highly reliable for the diagnosis of Hill-Sachs (and Bankart) lesions. One study used challenging methodology. First of all, it applied to those patients with a single, or first time, dislocation. Such lesions were likely to be smaller and therefore more difficult to detect. Second, two radiologists, who were blinded to the surgical outcome, reviewed the MRI findings, while two orthopedic surgeons, who were blinded to the MRI findings, reviewed videotapes of the arthroscopic procedures. Coefficiency of agreement was then calculated for the MRI and arthroscopic findings and there was total agreement ( kappa = 1.0) for Hill-Sachs and Bankart lesions.
Most countries have standard newborn exams that include a hip joint exam screening for early detection of hip dysplasia.
Sometimes during an exam a "click" or more precisely "clunk" in the hip may be detected (although not all clicks indicate hip dysplasia). When a hip click (also known as "clicky hips" in the UK) is detected, the child's hips are tracked with additional screenings to determine if developmental dysplasia of the hip is caused.
Two maneuvers commonly employed for diagnosis in neonatal exams are the Ortolani maneuver and the Barlow maneuver.
In order to do the Ortolani maneuver it is recommended that the examiner put the newborn baby in a position in which the contralateral hip is held still while the thigh of the hip being tested is abducted and gently pulled anteriorly. If a "clunk" is heard (the sound of the femoral head moving over the acetabulum), the joint is normal, but absence of the "clunk" sound indicates that the acetabulum is not fully developed. The next method that can be used is called the Barlow maneuver. It is done by adducting the hip while pushing the thigh posteriorly. If the hip goes out of the socket it means it is dislocated, and the newborn has a congenital hip dislocation. The baby is laid on its back for examination by separation of its legs. If a clicking sound can be heard, it indicates that the baby may have a dislocated hip. It is highly recommended that these maneuvers be done when the baby is not fussing, because the baby may inhibit hip movement.
The condition can be confirmed by ultrasound and X-ray. Ultrasound imaging yields better results defining the anatomy until the cartilage is ossified. When the infant is around 3 months old a clear roentgenographic image can be achieved. Unfortunately the time the joint gives a good x-ray image is also the point at which nonsurgical treatment methods cease to give good results. In x-ray imaging dislocation may be indicated if the Shenton's line (an arc drawn from the medial aspect of the femoral neck through the superior margin of the obturator foramen) does not result in a smooth arc. However, in infants this line can be unreliable as it depends on the rotation of the hip when the image is taken ()
Asymmetrical gluteal folds and an apparent limb-length inequality can further indicate unilateral hip dysplasia. Most vexingly, many newborn hips show a certain ligamentous laxity, on the other hand severely malformed joints can appear stable. That is one reason why follow-up exams and developmental monitoring are important. Frequency and methods of routine screenings in children is still in debate however physical examination of newborns followed by appropriate use of hip ultrasound is widely accepted.
The Harris hip score (developed by William H. Harris MD, an orthopedist from Massachusetts) is one way to evaluate hip function following surgery. Other scoring methods are based on patients' evaluation like e.g. the Oxford hip score, HOOS and WOMAC score. Children's Hospital Oakland Hip Evaluation Scale (CHOHES) is a modification of the Harris hip score that is currently being evaluated.
Hip dysplasia can develop in older age. Adolescents and adults with hip dysplasia may present with hip pain and in some cases hip labral tears. X-rays are used to confirm a diagnosis of hip dysplasia. CT scans and MRI scans are occasionally used too.
This abnormally wide gap can be diagnosed by radiologic studies such as x-ray, MRI, CT scan or bone scan. Manual testing by a healthcare professional can also be used. The patient is placed in various positions and pressure is applied in such a way that it provokes pain and maybe movement in the pubis.
Most temporomandibular disorders (TMDs) are self-limiting and do not get worse. Simple treatment, involving self-care practices, rehabilitation aimed at eliminating muscle spasms, and restoring correct coordination, is all that is required. Nonsteroidal anti inflammatory analgesics (NSAIDs) should be used on a short-term, regular basis and not on an as needed basis. On the other hand, treatment of chronic TMD can be difficult and the condition is best managed by a team approach; the team consists of a primary care physician, a dentist, a physiotherapist, a psychologist, a pharmacologist, and in small number of cases, a surgeon. The different modalities include patient education and self-care practices, medication, physical therapy, splints, psychological counseling, relaxation techniques, biofeedback, hypnotherapy, acupuncture, and arthrocentesis.
As with most dislocated joints, a dislocated jaw can usually be successfully positioned into its normal position by a trained medical professional. Attempts to readjust the jaw without the assistance of a medical professional could result in worsening of the injury. The health care provider may be able to set it back into the correct position by manipulating the area back into its proper position. Numbing medications such as general anesthetics, muscle relaxants, or in some cases sedation, may be needed to relax the strong jaw muscle. In more severe cases, surgery may be needed to reposition the jaw, particularly if repeated jaw dislocations have occurred.
Several indirect measurements on CT can be used to assess ligamentous integrity at the craniocervical junction. The Wackenheim line, a straight line extending along the posterior margin of the clivus through the dens, normally intersects the posterior margin of the tip of the dens on plain film. The basion to axion interval, or BAI, is also used, which is determined by measuring the distance between an imaginary vertical line at the anterior skull base, or basion, at the foramen magnum, and the axis of the cervical spine along its posterior margin, which should measure 12 mm, an assessment more reliable on radiograph than CT. The distance between the atlas and the occipital condyles, the atlanto-occipital interval (AOI), should measure less than 4 mm, and is better assessed on coronal images.
The distances between the dens and surrounding structures are also key features that can suggest the diagnosis, with the normal distance between the dens and basion (BDI) measuring less than 9 mm on CT, and the distance between the dens and atlas (ADI) measuring less than 3 mm on CT, although this can be increased in cases of rheumatoid arthritis due to pannus formation. Lastly, the atlanto-occipital interval can be measured.
The Powers ratio was formerly used, which was the tip of the basion to the spinolaminar line, divided by the distance from the tip of the opisthion to the midpoint of the posterior aspect of the anterior arch of C1. It is no longer recommended due to low sensitivity and difficulty identifying landmarks. It also will miss vertical or posterior displacement of the cervical spine.
Computed tomography is the most sensitive and specific of the imaging techniques. The facial bones can be visualized as slices through the skeletal in either the axial, coronal or sagittal planes. Images can be reconstructed into a 3-dimensional view, to give a better sense of the displacement of various fragments. 3D reconstruction, however, can mask smaller fractures owing to volume averaging, scatter artifact and surrounding structures simply blocking the view of underlying areas.
Research has shown that panoramic radiography is similar to computed tomography in its diagnostic accuracy for mandible fractures and both are more accurate than plain film radiograph. The indications to use CT for mandible fracture vary by region, but it does not seem to add to diagnosis or treatment planning except for comminuted or avulsive type fractures, although, there is better clinician agreement on the location and absence of fractures with CT compared to panoramic radiography.
Treatment involves fixation of the cervical spine to the skull base, or occipitocervical fusion, using paramedian rods and transpedicular screws with cross-links for stabilization. The patient is subsequently unable to rotate their head in the horizontal plane. If there is obstructive hydrocephalus, a pseudomeningocele can form, which is decompressed at the time of surgery.
Jaw dislocation is common for people who are in car, motorcycle or related accidents and also sports related activities. This injury does not pin point specific ages or genders because it could happen to anybody. People who dislocate their jaw do not usually seek emergency medical care. In most cases, jaw dislocations are acute and can be altered by minor manipulations. It was reported from one study that over a seven-year period at an emergency medical site, with 100,000 yearly visits, there were only 37 patients that were seen for a dislocated jaw.
An X-ray film will show a marked gap between the pubic bones, normally there is a 4–5 mm gap but in pregnancy, hormonal influences cause relaxation of the connecting ligaments and the bones separate up to 9 mm. To demonstrate instability of the joint the patient is required to stand in the "flamingo" position, (standing with weight on one leg and the other bent). A vertical displacement of more than 1 cm is an indicator of symphysis pubis instability. A displacement of more than 2 cm usually indicates involvement of the sacroiliac joints.
Some sources prefer "developmental dysplasia of the hip" (DDH) to "congenital dislocation of the hip" (CDH), finding the latter term insufficiently flexible in describing the diversity of potential complications.
The use of the word congenital can also imply that the condition already exists at birth. This terminology introduces challenges, because the joint in a newborn is formed from cartilage and is still malleable, making the onset difficult to ascertain.
The newer term DDH also encompasses occult dysplasia (e.g. an underdeveloped joint) without dislocation and a dislocation developing after the "newborn" phase.
The term is not used consistently. In pediatric/neonatal orthopedics it is used to describe unstable/dislocatable hips and poorly developed acetabula. For adults it describes hips showing abnormal femur head or acetabular x-rays.
Some sources prefer the term "hip dysplasia" over DDH, considering it to be "simpler and more accurate", partly because of the redundancy created by the use of the terms developmental and dysplasia. Types of DDH include subluxation, dysplasia, and dislocation. The main types are the result of either laxity of the supporting capsule or an abnormal acetabulum.
There are various classification systems of mandibular fractures in use.
Early treatment for mild cases of hallux rigidus may include prescription foot orthotics, shoe modifications (to take the pressure off the toe and/or facilitate walking), medications (anti-inflammatory drugs), injection therapy (corticosteroids to reduce inflammation and pain) and/or physical therapy.
In some cases, surgery is the only way to eliminate or reduce pain. There are several types of surgery for treatment of hallux rigidus. The type of surgery is based on the stage of hallux rigidus.
When diagnosing, PLF should be differentiated from Ménière's disease. Tympanostomy has been reported to be a way to diagnose and cure PLF.
Diagnosis of tendinitis and bursitis begins with a medical history and physical examination. X rays do not show tendons or the bursae but may be helpful in ruling out bony abnormalities or arthritis. The doctor may remove and test fluid from the inflamed area to rule out infection.
Ultrasound scans are frequently used to confirm a suspected tendinitis or bursitis as well as rule out a tear in the rotator cuff muscles.
Impingement syndrome may be confirmed when injection of a small amount of anesthetic (lidocaine hydrochloride) into the space under the acromion relieves pain.
Anterior-posterior (AP) X-rays of the pelvis, AP and lateral views of the femur (knee included) are ordered for diagnosis. The size of the head of the femur is then compared across both sides of the pelvis. The affected femoral head will appear larger if the dislocation is anterior, and smaller if posterior. A CT scan may also be ordered to clarify the fracture pattern.
The best diagnosis for a SLAP tear is a clinical exam
followed by an MRI combined with a contrast agent
Monteggia fractures may be managed conservatively in children with closed reduction (resetting and casting), but due to high risk of displacement causing malunion, open reduction internal fixation is typically performed.
Osteosynthesis (open reduction and internal fixation) of the ulnar shaft is considered the standard of care in adults. It promotes stability of the radial head dislocation and allows very early mobilisation to prevent stiffness. The elbow joint is particularly susceptible to loss of motion.
After an anterior shoulder dislocation, the risk of a future dislocation is about 20%. This risk is greater in males than females.
Aside from surgery, there are a few options for handling an accessory navicular bone that has become symptomatic. This includes immobilization, icing, medicating, physical therapy, and orthotic devices. Immobilizing involves placing the foot and ankle in a cast or removable walking boot. This alleviates stressors on the foot and can decrease inflammation. Icing will help reduce swelling and inflammation. Medication involves usage of nonsteroidal anti-inflammatory drugs, or steroids (taken orally or injected) to decrease inflammation. Physical therapy can be prescribed in order to strengthen the muscles and help decrease inflammation. Physical therapy can also help prevent the symptoms from returning. Orthotic devices (arch support devices that fit in a shoe) can help prevent future symptoms. Occasionally, the orthotic device will dig into the edge of the accessory navicular and cause discomfort. For this reason, the orthotic devices made for the patient should be carefully constructed.
Diagnosis is made on plain radiograph of the foot, although the extent of injury is often underestimated.
Treatment comprises early reduction of the dislocation, and frequently involves open reduction internal fixation to restore and stabilise the talonavicular joint. Open reduction and fusion of the calcaneocuboid joint is occasionally required.
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.