Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Myelopathy is primarily diagnosed by clinical exam findings. Because the term "myelopathy" describes a clinical syndrome that can be caused by many pathologies the differential diagnosis of myelopathy is extensive. In some cases the onset of myelopathy is rapid, in others, such as CSM, the course may be insidious with symptoms developing slowly over a period of months. As a consequence, the diagnosis of CSM is often delayed. As the disease is thought to be progressive, this may impact negatively on outcome.
Once the clinical diagnosis "myelopathy" has been established, the underlying cause needs to be investigated. Most commonly this involves the use of medical imaging techniques. The best way of visualising the spinal cord is Magnetic Resonance Imaging (MRI). Apart from T1 and T2 MRI images, which are commonly used for routine diagnosis, more recently the use quantitative MRI signals is being investigated. Further imaging modalities used for evaluating myelopathy include plain X-rays for detecting arthritic changes of the bones, and Computer Tomography, which is often used for pre-operative planning of surgical interventions for cervical spondylotic myelopathy. Angiography is used to examine blood vessels in suspected cases of vascular myelopathy.
The presence and severity of myelopathy can also be evaluated by means of Transcranial Magnetic Stimulation (TMS), a neurophysiological method that allows the measurement of the time required for a neural impulse to cross the pyramidal tracts, starting from the cerebral cortex and ending at the anterior horn cells of the cervical, thoracic or lumbar spinal cord. This measurement is called "Central Conduction Time" ("CCT"). TMS can aid physicians to:
- determine whether myelopathy exists
- identify the level of the spinal cord where myelopathy is located. This is especially useful in cases where more than two lesions may be responsible for the clinical symptoms and signs, such as in patients with two or more cervical disc hernias
- follow-up the progression of myelopathy in time, for example before and after cervical spine surgery
TMS can also help in the differential diagnosis of different causes of pyramidal tract damage.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.
The detection of spinal stenosis in the cervical, thoracic or lumbar spine confirms only the anatomic presence of a stenotic condition. This may or may not correlate with the diagnosis of spinal stenosis which is based on clinical findings of radiculopathy, neurogenic claudication, weakness, bowel and bladder dysfunction, spasticity, motor weakness, hyperreflexia and muscular atrophy. These findings, taken from the history and physical examination of the patient (along with the anatomic demonstration of stenosis with an MRI or CT scan), establish the diagnosis.
MRI is the preferred method of diagnosing and evaluating spinal stenosis of all areas of the spine, including cervical, thoracic and lumbar. MRI is useful to diagnose cervical spondylotic myelopathy (degenerative arthritis of the cervical spine with associated damage to the spinal cord). The finding of degeneration of the cervical spinal cord on MRI can be ominous; the condition is called myelomalacia or cord degeneration. It is seen as an increased signal on the MRI. In myelopathy (pathology of the spinal cord) from degenerative changes, the findings are usually permanent and decompressive laminectomy will not reverse the pathology. Surgery can stop the progression of the condition. In cases where the MRI changes are due to Vitamin B-12 deficiency, a brighter prospect for recovery can be expected.
Physicians now use magnetic resonance imaging (MRI) to diagnose syringomyelia. The MRI radiographer takes images of body anatomy, such as the brain and spinal cord, in vivid detail. This test will show the syrinx in the spine or any other conditions, such as the presence of a tumor. MRI is safe, painless, and informative and has greatly improved the diagnosis of syringomyelia.
The physician may order additional tests to help confirm the diagnosis. One of these is called electromyography (EMG), which show possible lower motor neuron damage. In addition, computed axial tomography (CT) scans of a patient's head may reveal the presence of tumors and other abnormalities such as hydrocephalus.
Like MRI and CT scans, another test, called a myelogram, uses radiographs and requires a contrast medium to be injected into the subarachnoid space. Since the introduction of MRI this test is rarely necessary to diagnose syringomyelia.
The possible causes are trauma, tumors and congenital defects. It is most usually observed in the part of the spinal cord corresponding to the neck area. Symptoms are due to spinal cord damage and are: pain, decreased sensation of touch, weakness and loss of muscle tissue. The diagnosis is confirmed with a spinal CT, myelogram or MRI of the spinal cord. The cavity may be reduced by surgical decompression.
Furthermore, evidence also suggests that impact injuries to the thorax area highly correlate with the occurrence of a cervical-located syrinx.
A spinal tap is performed in the low back with dye injected into the spinal fluid. X-Rays are performed followed by a CT scan of the spine to help see narrowing of the spinal canal.
This is a very effective study in cases of lateral recess stenosis. It is also necessary for patients in which MRI is contraindicated, such as those with implanted pacemakers.
MRI has become the most frequently used study to diagnose spinal stenosis. The MRI uses electromagnetic signals to produce images of the spine. MRIs are helpful because they show more structures, including nerves, muscles, and ligaments, than seen on x-rays or CT scans. MRIs are helpful at showing exactly what is causing spinal nerve compression.
There are two tests that can provide a definite diagnosis of myelomalacia; magnetic resonance imaging (MRI), or myelography. Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize the internal structure of the body used in the diagnosing of myelomalacia. Certain MRI findings can detect where bone density and matter has been lost in people with spinal cord injuries. Diffuse hyperintensity appreciated on T2-weighted imaging of the spinal cord can be an indication of the onset or progression of myelomalacia
The diagnosis process might include a physician who tests that the movement, strength, and sensation of the arms and legs are normal. The spine is examined for its range of motion and any pain that may arise from movement. Blood work might be utilized in addition to radiographic imaging in order to identify spinal cord diseases. Basic imaging techniques, which includes x-ray imaging, can reveal degenerative changes of the spine, while more advanced imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), can allow visualization of more detailed anatomical structures, including that of the associated nerves and muscles. The most detailed and specific testing is electrodiagnostic, which helps to uncover whether the appropriate electrical signals are being sent to each muscle from the correlate nerves. This aids in localizing a problem's source. There are risks to be considered with any diagnostic testing. For example, in the case of CT imaging, there is obvious benefit over x-ray in that a more thorough picture of the anatomy is exposed, but there is a trade-off in that CT has around a 10-fold increased radiation exposure; alternatively, while MRI provides highly detailed imaging of the anatomy with the benefit of no radiation exposure to the patient, the high cost of this test must be taken into account.
For children younger than eight weeks of age (and possibly in utero), a tethered cord may be observed using ultrasonography. Ultrasonography may still be useful through age 5 in limited circumstances.
MRI imaging appears to be the gold standard for diagnosing a tethered cord.
A tethered cord is often diagnosed as a "low conus." The conus medullaris (or lower termination of the spinal cord) normally terminates at or above the L1-2 disk space (where L1 is the first, or topmost lumbar vertebra). After about 3 months of age, a conus below the L1-2 disk space may indicate a tethered cord and termination below L3-4 is unmistakably tethered. "Cord tethering is often assumed when the conus is below the normal L2-3 level.
TCS, however, is a clinical diagnosis that should be based on "neurological and musculoskeletal signs and symptoms. Imaging features are in general obtained to support rather than make the diagnosis." Clinical evaluation may include a simple rectal examination and may also include invasive or non-invasive urological examination. "Bladder dysfunction occurs in ~40% of patients affected by tethered cord syndrome. ... [I]t may be the earliest sign of the syndrome."
There are multiple techniques used in the diagnosis of spondylosis, these are;
- Cervical Compression Test, a variant of Spurling's test, is performed by laterally flexing the patient's head and placing downward pressure on it. Neck or shoulder pain on the ipsilateral side (i.e. the side to which the head is flexed) indicates a positive result for this test. However it should be noted that a positive test result is not necessarily a positive result for spondylosis and as such additional testing is required.
- Lhermitte sign: feeling of electrical shock with patient neck flexion
- Reduced range of motion of the neck, the most frequent objective finding on physical examination
- MRI and CT scans are helpful for pain diagnosis but generally are not definitive and must be considered together with physical examinations and history.
Wobblers is definitively diagnosed by x-ray, nuclear scintography or bone scan. X-rays will show channel widening or filling the easiest and are often most cost effective to horse owners. X-rays will also show any structural anomaly, arthritis, facet remodeling, or bone spurs present. Preliminary diagnosis can be made by ultrasound but x-rays are needed to measure the true depth of facet involvement. For extent of damage to associated structures, veterinarians may opt to have the horse undergo a bone scan or nuclear scintography.
A 69-year-old male with tethered cord that was low lying and associated with Spina Bifida in the form of meningocele that was operated on as an infant, was studied in this research. He presented with worsened neurological deficits due to progressive lumbar stenosis at the L3-L4 level which was associated with the spinal discs degenerating. Extreme lateral inter body fusion (XLIF) was performed to allow for indirect spinal cord decompression and stability which allowed for neurological improvement. The role of the XLIF approach to this treatment was emphasized and compared to other surgical approaches. It was concluded that surgical decompression should be performed as soon as possible to prevent any further neurological damage. Also concluded was that the XLIF approach is safe and fast and is indicative of a good surgical option to obtain spinal cord indirect decompression and lumbar inter body fusion.
Examination for pain sensation, by pinprick, shows leg (lumbar nerves) analgesia with perineal (sacral nerves) escape. The maintenance of perineal sensation with absence of pain sensation over the lumbar nerve roots is typical for an extra-medullary and intra-thecal (outside the cord and within the dural sheath) process. Inability to walk, with this unusual sensory examination completes a triad of signs and usually represents spinal tuberculosis. The triad is paraplegia with lumbar loss of pain sensation and presence of perineal altered sensation.
Diagnosis is usually confirmed by an MRI scan or CT scan, depending on availability. Early surgery in acute onset of severe cases has been reported to be important.
A radiographic evaluation using an X-ray, CT scan, or MRI can determine if there is damage to the spinal column and where it is located. X-rays are commonly available and can detect instability or misalignment of the spinal column, but do not give very detailed images and can miss injuries to the spinal cord or displacement of ligaments or disks that do not have accompanying spinal column damage. Thus when X-ray findings are normal but SCI is still suspected due to pain or SCI symptoms, CT or MRI scans are used. CT gives greater detail than X-rays, but exposes the patient to more radiation, and it still does not give images of the spinal cord or ligaments; MRI shows body structures in the greatest detail. Thus it is the standard for anyone who has neurological deficits found in SCI or is thought to have an unstable spinal column injury.
Neurological evaluations to help determine the degree of impairment are performed initially and repeatedly in the early stages of treatment; this determines the rate of improvement or deterioration and informs treatment and prognosis. The ASIA Impairment Scale outlined above is used to determine the level and severity of injury.
If one’s symptoms are mild, treatments like Massage, Exercise, and Stress management will suffice in reducing pain and pressure, but those with more severe symptoms are told to undergo unique therapies based on their exact situation. These patients most likely will have their postures and spine alignment fixed, and/or treatments like electrical stimulation may be used to help in reducing pain and aid in flexibility. Medicine, epidural injections and surgeries are also implemented to treat such a disorder.
Early diagnosis can allow for preventive treatment. Signs that allow early diagnosis include changes in bowel and bladder function and loss of feeling in groin.
There is no known treatment to reverse nerve damage due to myelomalacia. In some cases, surgery may slow or stop further damage. As motor function degenerates, muscle spasticity and atrophy may occur. Steroids may be prescribed to reduce swelling of the spinal cord, pain, and spasticity.
Research is underway to consider the potential of stem cells for treatment of neurodegenerative diseases. There are, however, no approved stem cell therapies for myelomalacia.
The precise causes of syringomyelia are still unknown although blockage to the flow of cerebrospinal fluid has been known to be an important factor since the 1970s. Scientists in the UK and America continue to explore the mechanisms that lead to the formation of syrinxes in the spinal cord. It has been demonstrated a block to the free flow of cerebrospinal fluid is a contributory factor in the pathogenesis of the disease. Duke University in America and Warwick University are conducting research to explore genetic features of syringomyelia.
Surgical techniques are also being refined by the neurosurgical research community. Successful procedures expand the area around the cerebellum and spinal cord, thus improving the flow of cerebrospinal fluid thereby reducing the syrinx.
It is also important to understand the role of birth defects in the development of hindbrain malformations that can lead to syringomyelia as syringomyelia is a feature of intrauterine life and is also associated with spina bifida. Learning when these defects occur during the development of the fetus can help us understand this and similar disorders, and may lead to preventive treatment that can stop the formation of some birth abnormalities. Dietary supplements of folic acid prior to pregnancy have been found to reduce the number of cases of spina bifida and are also implicated in prevention of cleft palate and some cardiac defects.
Diagnostic technology is another area for continued research. MRI has enabled scientists to see conditions in the spine, including syringomyelia before symptoms appear. A new technology, known as dynamic MRI, allows investigators to view spinal fluid flow within the syrinx. CT scans allow physicians to see abnormalities in the brain, and other diagnostic tests have also improved greatly with the availability of new, non-toxic, contrast dyes.
The first stage in the management of a suspected spinal cord injury is geared toward basic life support and preventing further injury: maintaining airway, breathing, and circulation and immobilizing the spine.
In the emergency setting, anyone who has been subjected to forces strong enough to cause SCI is treated as though they have instability in the spinal column and is immobilized to prevent damage to the spinal cord. Injuries or fractures in the head, neck, or pelvis as well as penetrating trauma near the spine and falls from heights are assumed to be associated with an unstable spinal column until it is ruled out in the hospital. High-speed vehicle crashes, sports injuries involving the head or neck, and diving injuries are other mechanisms that indicate a high SCI risk. Since head and spinal trauma frequently coexist, anyone who is unconscious or has a lowered level of consciousness as a result of a head injury is immobilized.
A rigid cervical collar is applied to the neck, and the head is held immobile with blocks on either side and the person is strapped to a backboard. Extrication devices are used to move people without moving the spine if they are still inside a vehicle or other confined space.
Modern trauma care includes a step called clearing the cervical spine, ruling out spinal cord injury if the patient is fully conscious and not under the influence of drugs or alcohol, displays no neurological deficits, has no pain in the middle of the neck and no other painful injuries that could distract from neck pain. If these are all absent, no immobilization is necessary.
If an unstable spinal column injury is moved, damage may occur to the spinal cord. Between 3 and 25% of SCIs occur not at the time of the initial trauma but later during treatment or transport. While some of this is due to the nature of the injury itself, particularly in the case of multiple or massive trauma, some of it reflects the failure to immobilize the spine adequately.
SCI can impair the body's ability to keep warm, so warming blankets may be needed.
For the ossificans form of the condition, unenhanced CT may better show the presence and extent of arachnoid ossifications, and is complementary to MRI, as MRI can be less specific and findings can be confused with regions of calcification or hemosiderin.
Diagnosis is by X-rays but preferably magnetic resonance imaging (MRI) of the whole spine. The most common causes of cord compression are tumors, but abscesses and granulomas (e.g. in tuberculosis) are equally capable of producing the syndrome. Tumors that commonly cause cord compression are lung cancer (non-small cell type), breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, lymphoma and multiple myeloma.
Arachnoiditis is difficult to treat and treatment is generally limited to alleviation of pain and other symptoms. While arachnoiditis may not yet be curable and can be significantly life-altering, management of the condition, including with medication, physical therapy, and if appropriate, psychotherapy, can help patients cope with the difficulties it presents. Surgical intervention generally has a poor outcome and may only provide temporary relief, but some cases of surgical success have been reported. Epidural steroid injections to treat sciatic pain have been linked as a "cause" of the disease by the U.S. Food and Drug Administration as well as in other research, and are therefore discouraged as a treatment for Arachnoiditis as they will most likely worsen the condition. Some patients benefit from motorized assistance devices such as the Segway or standing wheelchairs, although these types of devices may be beyond the reach of those with limited means. Standing endurance and vibration tolerance are considered before considering such devices in any case.
Treatment is usually conservative in nature. Patient education on lifestyle modifications, chiropractic, nonsteroidal anti-inflammatory drugs (NSAIDs), physical therapy, and osteopathic care are common forms of manual care that help manage such conditions. Other alternative therapies such as massage, trigger-point therapy, yoga and acupuncture may be of limited benefit. Surgery is occasionally performed.
Many of the treatments for cervical spondylosis have not been subjected to rigorous, controlled trials. Surgery is advocated for cervical radiculopathy in patients who have intractable pain, progressive symptoms, or weakness that fails to improve with conservative therapy. Surgical indications for cervical spondylosis with myelopathy (CSM) remain somewhat controversial, but "most clinicians recommend operative therapy over conservative therapy for moderate-to-severe myelopathy" (Baron, M.E.).
Physical therapy may be effective for restoring range of motion, flexibility and core strengthening. Decompressive therapies (i.e. manual mobilization, mechanical traction) may also help alleviate pain. However, physical therapy and osteopathy cannot "cure" the degeneration, and some people view that strong compliance with postural modification is necessary to realize maximum benefit from decompression, adjustments and flexibility rehabilitation.
It has been argued, however, that the cause of spondylosis is simply old age, and that posture modification treatment is often practiced by those who have a financial interest (such as Worker's Compensation) in proving that it is caused by work conditions and poor physical habits. Understanding anatomy is the key to conservative management of spondylosis.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.