Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The United States Preventive Services Task Force as of 2013 states there is insufficient evidence to recommend for or against screening for glaucoma. Therefore, there is no national screening program in the US. Screening, however, is recommended starting at age 40 by the American Academy of Ophthalmology.
There is a glaucoma screening program in the UK. Those at risk are advised to have a dilated eye examination at least once a year.
Retinal detachment can be examined by fundus photography or ophthalmoscopy. Fundus photography generally needs a considerably larger instrument than the ophthalmoscope, but has the advantage of availing the image to be examined by a specialist at another location and/or time, as well as providing photo documentation for future reference. Modern fundus photographs generally recreate considerably larger areas of the fundus than what can be seen at any one time with handheld ophthalmoscopes.
Ultrasound has diagnostic accuracy similar to that of examination by an ophthalmologist. The recent meta-analysis shows the diagnostic accuracy of emergency department (ED) ocular ultrasonography is high. The sensitivity and specificity ranged from 97% to 100% and 83% to 100%. The typical feature of retinal detachment when viewed on ultrasound is "flying angel sign". It shows the detached retina moving with a fixed point under the B mode, linear probe 10 MHz.
A minority of retinal detachments result from trauma, including blunt blows to the orbit, penetrating trauma, and concussions to the head. A retrospective Indian study of more than 500 cases of rhegmatogenous detachments found that 11% were due to trauma, and that gradual onset was the norm, with over 50% presenting more than one month after the inciting injury.
PEX is usually diagnosed by an eye doctor who examines the eye using a microscope. The method is termed slit lamp examination and it is done with an "85% sensitivity rate and a 100% specificity rate." Since the symptom of increased pressure within the eye is generally painless until the condition becomes rather advanced, it is possible for people afflicted with glaucoma to be in danger yet not be aware of it. As a result, it is recommended that persons have regular eye examinations to have their levels of intraocular pressure measured, so that treatments can be prescribed before there is any serious damage to the optic nerve and subsequent loss of vision.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
Prior to any physical examination, the diagnosis of keratoconus frequently begins with an ophthalmologist's or optometrist's assessment of the person's medical history, particularly the chief complaint and other visual symptoms, the presence of any history of ocular disease or injury which might affect vision, and the presence of any family history of ocular disease. An eye chart, such as a standard Snellen chart of progressively smaller letters, is then used to determine the person's visual acuity. The eye examination may proceed to measurement of the localized curvature of the cornea with a manual keratometer, with detection of irregular astigmatism suggesting a possibility of keratoconus. Severe cases can exceed the instrument's measuring ability. A further indication can be provided by retinoscopy, in which a light beam is focused on the person's retina and the reflection, or reflex, observed as the examiner tilts the light source back and forth. Keratoconus is amongst the ophthalmic conditions that exhibit a scissor reflex action of two bands moving toward and away from each other like the blades of a pair of scissors.
If keratoconus is suspected, the ophthalmologist or optometrist will search for other characteristic findings of the disease by means of slit lamp examination of the cornea. An advanced case is usually readily apparent to the examiner, and can provide for an unambiguous diagnosis prior to more specialized testing. Under close examination, a ring of yellow-brown to olive-green pigmentation known as a Fleischer ring can be observed in around half of keratoconic eyes. The Fleischer ring, caused by deposition of the iron oxide hemosiderin within the corneal epithelium, is subtle and may not be readily detectable in all cases, but becomes more evident when viewed under a cobalt blue filter. Similarly, around 50% of subjects exhibit Vogt's striae, fine stress lines within the cornea caused by stretching and thinning. The striae temporarily disappear while slight pressure is applied to the eyeball. A highly pronounced cone can create a V-shaped indentation in the lower eyelid when the person's gaze is directed downwards, known as Munson's sign. Other clinical signs of keratoconus will normally have presented themselves long before Munson's sign becomes apparent, and so this finding, though a classic sign of the disease, tends not to be of primary diagnostic importance.
A handheld keratoscope, sometimes known as "Placido's disk", can provide a simple noninvasive visualization of the surface of the cornea by projecting a series of concentric rings of light onto the cornea. A more definitive diagnosis can be obtained using corneal topography, in which an automated instrument projects the illuminated pattern onto the cornea and determines its topography from analysis of the digital image. The topographical map indicates any distortions or scarring in the cornea, with keratoconus revealed by a characteristic steepening of curvature which is usually below the centreline of the eye. The technique can record a snapshot of the degree and extent of the deformation as a benchmark for assessing its rate of progression. It is of particular value in detecting the disorder in its early stages when other signs have not yet presented.
Diagnosis is clinical, seeking a history of eye injury. An important differential diagnosis is Vogt-Koyanagi-Harada syndrome (VKH), which is thought to have the same pathogenesis, without a history of surgery or penetrating eye injury.
Still experimental, skin tests with soluble extracts of human or bovine uveal tissue are said to elicit delayed hypersensitivity responses in these patients. Additionally, circulating antibodies to uveal antigens have been found in patients with SO and VKH, as well as those with long-standing uveitis, making this a less than specific assay for SO and VKH.
In an eye with iridocyclitis, (inflammation of both the iris and ciliary body), the involved pupil will be smaller than the uninvolved, due to reflex muscle spasm of the sphincter muscle of the iris.
Generally, conjunctivitis does not affect the pupils.
With acute angle-closure glaucoma, the pupil is generally fixed in mid-position, oval, and responds sluggishly to light, if at all.
Shallow anterior chamber depth may indicate a predisposition to one form of glaucoma (narrow angle) but requires slit-lamp examination or other special techniques to determine it.
In the presence of a "red eye", a shallow anterior chamber may indicate acute glaucoma, which requires immediate attention.
Screening for glaucoma is usually performed as part of a standard eye examination performed by optometrists and ophthalmologists. Testing for glaucoma should include measurements of the intraocular pressure via tonometry, anterior chamber angle examination or gonioscopy, and examination of the optic nerve to look for any visible damage to it, or change in the cup-to-disc ratio and also rim appearance and vascular change. A formal visual field test should be performed. The retinal nerve fiber layer can be assessed with imaging techniques such as optical coherence tomography, scanning laser polarimetry, and/or scanning laser ophthalmoscopy (Heidelberg retinal tomogram).
Owing to the sensitivity of all methods of tonometry to corneal thickness, methods such as Goldmann tonometry should be augmented with pachymetry to measure the central corneal thickness (CCT). A thicker-than-average cornea can result in a pressure reading higher than the 'true' pressure whereas a thinner-than-average cornea can produce a pressure reading lower than the 'true' pressure.
Because pressure measurement error can be caused by more than just CCT (i.e., corneal hydration, elastic properties, etc.), it is impossible to 'adjust' pressure measurements based only on CCT measurements. The frequency doubling illusion can also be used to detect glaucoma with the use of a frequency doubling technology perimeter.
Examination for glaucoma also could be assessed with more attention given to sex, race, history of drug use, refraction, inheritance and family history.
Glaucoma has been classified into specific types:
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Once keratoconus has been diagnosed, its degree may be classified by several metrics:
- The steepness of greatest curvature from 'mild' ( 52 D);
- The morphology of the cone: 'nipple' (small: 5 mm and near-central), 'oval' (larger, below-center and often sagging), or 'globus' (more than 75% of cornea affected);
- The corneal thickness from mild (> 506 μm) to advanced (< 446 μm).
Increasing use of corneal topography has led to a decline in use of these terms.
Diagnosis includes dilated fundus examination to rule out posterior uveitis, which presents with white spots across the retina along with retinitis and vasculitis.
Laboratory testing is usually used to diagnose specific underlying diseases, including rheumatologic tests (e.g. antinuclear antibody, rheumatoid factor, angiotensin converting enzyme inhibitor <-- error) and serology for infectious diseases (Syphilis, Toxoplasmosis, Tuberculosis).
Major histocompatibility antigen testing may be performed to investigate genetic susceptibility to uveitis. The most common antigens include HLA-B27, HLA-A29 (in birdshot chorioretinopathy) and HLA-B51 (in Behçet disease).
Radiology X-ray may be used to show coexisting arthritis and chest X-ray may be helpful in sarcoidosis.
NK is diagnosed on the basis of the patient's medical history and a careful examination of the eye and surrounding area.
With regard to the patient's medical history, special attention should be paid to any herpes virus infections and possible surgeries on the cornea, trauma, abuse of anaesthetics or chronic topical treatments, chemical burns or, use of contact lenses. It is also necessary to investigate the possible presence of diabetes or other systemic diseases such as multiple sclerosis.
The clinical examination is usually performed through a series of assessments and tools:
- General examination of cranial nerves, to determine the presence of nerve damage.
- Eye examinations:
1. Complete eye examination: examination of the eyelids, blink rate, presence of inflammatory reactions and secretions, corneal epithelial alterations.
2. Corneal sensitivity test: performed by placing a cotton wad or cotton thread in contact with the corneal surface: this only allows to determine whether corneal sensitivity is normal, reduced or absent; or using an esthesiometer that allows to assess corneal sensitivity.
3. Tear film function test, such as Schirmer's test, and tear film break-up time.
4. Fluorescein eye stain test, which shows any damage to the corneal and conjunctival epithelium
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
Scleritis is best detected by examining the sclera in daylight; retracting the lids helps determine the extent of involvement. Other aspects of the eye exam (i.e. visual acuity testing, slit lamp examination, etc.) may be normal. Scleritis may be differentiated from episcleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis.
Ancillary tests CT scans, MRIs, and ultrasonographies can be helpful, but do not replace the physical examination.
Controversies exist around eliminating this disorder from breeding Collies. Some veterinarians advocate only breeding dogs with no evidence of disease, but this would eliminate a large portion of potential breeding stock. Because of this, others recommend only breeding mildly affected dogs, but this would never completely eradicate the condition. Also, mild cases of choroidal hypoplasia may become pigmented and therefore undiagnosable by the age of three to seven months. If puppies are not checked for CEA before this happens, they may be mistaken for normal and bred as such. Checking for CEA by seven weeks of age can eliminate this possibility. Diagnosis is also difficult in dogs with coats of dilute color because lack of pigment in the choroid of these animals can be confused with choroidal hypoplasia. Also, because of the lack of choroidal pigment, mild choroidal hypoplasia is difficult to see, and therefore cases of CEA may be missed.
Until recently, the only way to know if a dog was a carrier was for it to produce an affected puppy. However, a genetic test for CEA became available at the beginning of 2005, developed by the Baker Institute for Animal Health, Cornell University, and administered through OptiGen. The test can determine whether a dog is affected, a carrier, or clear, and is therefore a useful tool in determining a particular dog's suitability for breeding.
Corneal and Retinal Topography: computerized tests that maps the surface of the retina, or the curvature of the cornea.
Fluorescein Angiogram: evaluation of blood circulation in the retina.
Dilated Pupillary Exam: special drops expand the pupil, which then allows doctors to examine the retina.
Slit-Lamp Exam: By shining a small beam of light in the eye, eye doctors can diagnose cataracts, glaucoma, retinal detachment, macular degeneration, injuries to the cornea, and dry eye disease.
Ultrasound: Provides a picture of the eye’s internal structure, and can evaluate ocular tumors, or the retina if its suffering from cataracts or hemorrhages.
Because SO is so rarely encountered following eye injury, even when the injured eye is retained, the first choice of treatment may not be enucleation or evisceration, especially if there is a chance that the injured eye may regain some function. Additionally, with current advanced surgical techniques, many eyes once considered nonviable now have a fair prognosis.
However, only if the injured eye has completely lost its vision and has no potential for any visual recovery, prevention of SO is done by enucleation of the injured eye preferably within the first 2 weeks of injury. Evisceration—the removal of the contents of the globe while leaving the sclera and extraocular muscles intact—is easier to perform, offers long-term orbital stability, and is more aesthetically pleasing, i.e., a greater measure of movement of the prosthesis and thus a more natural appearance. There is concern, however, that evisceration may lead to a higher incidence of SO compared to enucleation. Several retrospective studies involving over 3000 eviscerations, however, have failed to identify a single case of SO.
Once SO is developed, Immunosuppressive therapy is the mainstay of treatment. When initiated promptly following injury, it is effective in controlling the inflammation and improving the prognosis. Mild cases may be treated with local application of corticosteroids and pupillary dilators. More severe or progressive cases require high-dose systemic corticosteroids for months to years. Patients who become resistant to corticosteroids or develop side effects of long-term corticosteroid therapy (osteoporosis and pathologic fractures, mental status changes, etc.), may be candidates for therapy with chlorambucil, cyclophosphamide, or ciclosporin.
There is no way to prevent keratoconjunctivitis sicca. Complications can be prevented by use of wetting and lubricating drops and ointments.
Imaging studies such as ultrasonography (US), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) can aid diagnosis. On ultrasound, Coats' disease appears as a hyperechoic mass in the posterior vitreous without posterior acoustic shadowing; vitreous and subretinal hemorrhage may often be observed.
On CT, the globe appears hyperdense compared to normal vitreous due to the proteinaceous exudate, which may obliterate the vitreous space in advanced disease. The anterior margin of the subretinal exudate enhances with contrast. Since the retina is fixed posteriorly at the optic disc, this enhancement has a V-shaped configuration.
On MRI, the subretinal exudate shows high signal intensity on both T1- and T2-weighted images. The exudate may appear heterogeneous if hemorrhage or fibrosis is present. The subretinal space does not enhance with gadolinium contrast. Mild to moderate linear enhancement may be seen between the exudate and the remaining vitreous. The exudate shows a large peak at 1-1.6 ppm on proton MR spectroscopy.
The diagnosis of episcleritis is based upon the history and physical examination. The history should be explored for the presence of the diseases associated with episcleritis, and the symptoms they cause, such as rash, arthritis, venereal disease, and recent viral infection. Episcleritis may be differentiated from scleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis. A blue color to the sclera suggests scleritis, rather than episcleritis.
After anesthetizing the eye with medication, the conjunctiva may be moved with a cotton swab to observe the location of the enlarged blood vessels.
Chorioretinitis is usually treated with a combination of corticosteroids and antibiotics. However, if there is an underlying cause such as HIV, specific therapy can be started as well.
A 2012 Cochrane Review found weak evidence suggesting that ivermectin could result in reduced chorioretinal lesions in patients with onchocercal eye disease. More research is needed to support this finding.
On photographs taken using a flash, instead of the familiar red-eye effect, leukocoria can cause a bright white reflection in an affected eye. Leukocoria may appear also in low indirect light, similar to eyeshine.
Leukocoria can be detected by a routine eye exam (see Ophthalmoscopy). For screening purposes, the red reflex test is used. In this test, when a light is shone briefly through the pupil, an orange red reflection is normal. A white reflection is leukocoria.
Grossly, retinal detachment and yellowish subretinal exudate containing cholesterol crystals are commonly seen.
Microscopically, the wall of retinal vessels may be thickened in some cases, while in other cases the wall may be thinned with irregular dilatation of the lumen. The subretinal exudate consists of cholesterol crystals, macrophages laden with cholesterol and pigment, erythrocytes, and hemosiderin. A granulomatous reaction, induced by the exudate, may be seen with the retina. Portions of the retina may develop gliosis as a response to injury.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.