Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Ishihara color test, which consists of a series of pictures of colored spots, is the test most often used to diagnose red–green color deficiencies. A figure (usually one or more Arabic digits) is embedded in the picture as a number of spots in a slightly different color, and can be seen with normal color vision, but not with a particular color defect. The full set of tests has a variety of figure/background color combinations, and enable diagnosis of which particular visual defect is present. The anomaloscope, described above, is also used in diagnosing anomalous trichromacy.
Because the Ishihara color test contains only numerals, it may not be useful in diagnosing young children, who have not yet learned to use numerals. In the interest of identifying these problems early on in life, alternative color vision tests were developed using only symbols (square, circle, car).
Besides the Ishihara color test, the US Navy and US Army also allow testing with the Farnsworth Lantern Test. This test allows 30% of color deficient individuals, whose deficiency is not too severe, to pass.
Another test used by clinicians to measure chromatic discrimination is the Farnsworth-Munsell 100 hue test. The patient is asked to arrange a set of colored caps or chips to form a gradual transition of color between two anchor caps.
The HRR color test (developed by Hardy, Rand, and Rittler) is a red–green color test that, unlike the Ishihara, also has plates for the detection of the tritan defects.
Most clinical tests are designed to be fast, simple, and effective at identifying broad categories of color blindness. In academic studies of color blindness, on the other hand, there is more interest in developing flexible tests to collect thorough datasets, identify copunctal points, and measure just noticeable differences.
Many applications for iPhone and iPad have been developed to help colorblind people to view the colors in a better way. Many applications launch a sort of simulation of colorblind vision to make normal-view people understand how the color-blinds see the world. Others allow a correction of the image grabbed from the camera with a special "daltonizer" algorithm.
The GNOME desktop environment provides colorblind accessibility using the gnome-mag and the libcolorblind software. Using a gnome applet, the user may switch a color filter on and off, choosing from a set of possible color transformations that will displace the colors in order to disambiguate them. The software enables, for instance, a colorblind person to see the numbers in the Ishihara test.
Dichromacy ("di" meaning "two" and "chroma" meaning "color") is the state of having two types of functioning color receptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats can match any color they see with a mixture of no more than two pure spectral lights. By comparison, trichromats require three pure spectral lights to match all colors that they can perceive, and tetrachromats require four.
Dichromacy in humans is a color vision defect in which one of the three basic color mechanisms is absent or not functioning. It is hereditary and sex-linked, predominantly affecting males. Dichromacy occurs when one of the cone pigments is missing and color is reduced to two dimensions.
According to colour vision researchers at the Medical College of Wisconsin (including Jay Neitz), each of the three standard colour-detecting cones in the retina of trichromats – blue, green and red – can pick up about 100 different gradations of colour. If each detector is independent of the others, simple exponentiation gives a total number of colours discernible by an average human as their product, or about 1 million; nevertheless, other researchers have put the number at upwards of 2.3 million. Exponentiation suggests that a dichromat (such as a human with red-green color blindness) would be able to distinguish about 10,000 different colours, but no such calculation has been verified by psychophysical testing.
Furthermore, dichromats have a significantly higher threshold than trichromats for coloured stimuli flickering at low (1 Hz) frequencies. At higher (10 or 16 Hz) frequencies, dichromats perform as well as or better than trichromats.. This means such animals would still observe the flicker instead of a temporally fused visual percept as is the case in human movie watching at a high enough frame rate.